Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Syndioselective coordination (Co)polymerization of triphenylamine-substituted styrenes via a scandium catalyst system

Abstract

Coordination polymerization of the triphenylamine-substituted styrene derivatives N,N-diphenyl-4′-vinyl-[1,1′-biphenyl]-4-amine (FSt1) and N,N-bis(4-bromophenyl)-4′-vinyl-[1,1′-biphenyl]-4-amine (FSt2) was successfully achieved via the rare-earth metal catalyst (C5Me4SiMe3)Sc-(CH2SiMe3)2(THF). The catalyst system showed high activity and excellent syndioselectivity (rrrrå 99%) for the polymerization of FSt. Moreover, the syndioselective copolymerization of FSt with styrene was also achieved with this catalyst system. The insertion rate of triphenylamine-substituted monomers could be tuned by simply changing the feed amount. Strikingly, the copolymers showed random or gradient sequence distributions depending on the different reactivity ratios of FSt with St. Representative photophysical properties, such as those observed using UV–vis absorption and fluorescence spectroscopy, of the (co)polymers were also characterized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ishihara N, Seimiya T, Kuramoto M, Uoi M. Crystalline syndiotactic polystyrene. Macromolecules. 1986;19:2464–5.

    Article  CAS  Google Scholar 

  2. Zinck P, Bonnet F, Mortreux A, Visseaux M. Functionalization of syndiotactic polystyrene. Prog Polym Sci. 2009;34:369–92.

    Article  CAS  Google Scholar 

  3. Jaymand M. Recent progress in the chemical modification of syndiotactic polystyrene. Poly Chem. 2014;5:2663–90.

    Article  CAS  Google Scholar 

  4. Li HM, Chen HB, Shen ZG, Lin S. Preparation and characterization of maleic anhydride-functionalized syndiotactic polystyrene. Polymer. 2002;43:5455–61.

    Article  CAS  Google Scholar 

  5. Abbasian M. Synthesis of functional syndiotactic polystyrene copolymers with graft and block structures by nitroxide-mediated living radical polymerization. J Elastomers Plast. 2011;43:481–497.

    Article  CAS  Google Scholar 

  6. Noble KF, Noble AM, Talley SJ, Moore RB. Blocky bromination of syndiotactic polystyreneviapost-polymerization functionalization in the heterogeneous gel state. Polym Chem. 2018;9:5095–106.

    Article  CAS  Google Scholar 

  7. Wang ZC, Wang MY, Liu JY, Liu DT, Cui DM. Rapid syndiospecific (Co)polymerization of fluorostyrene with high monomer conversion. Chem Eur J. 2017;23:18151–5.

    Article  CAS  PubMed  Google Scholar 

  8. Wang T, Liu DT, Cui DM. Highly syndioselective coordination (Co)polymerization ofortho-fluorostyrene. Macromolecules. 2019;52:9555–60.

    Article  CAS  Google Scholar 

  9. Wu Y, Wang ZC, Liu DT, Liu B, Cui DM. Highly syndioselective coordination (Co)polymerization ofpara-chlorostyrene. Macromolecules. 2020;53:8333–9.

    Article  CAS  Google Scholar 

  10. Guo F, Jiao N, Jiang L, Li Y, Hou ZM. Scandium-catalyzed syndiospecific polymerization of halide-substituted styrenes and their copolymerization with styrene. Macromolecules. 2017;50:8398–405.

    Article  CAS  Google Scholar 

  11. Liu DT, Wang R, Wang MY, Wu CJ, Wang ZC, Yao CG et al. Syndioselective coordination polymerization of unmasked polar methoxystyrenes using a pyridenylmethylene fluorenyl yttrium precursor. Chem Commun. 2015;51:4685–8.

    Article  CAS  Google Scholar 

  12. Wang R, Liu DT, Li XH, Zhang J, Cui DM, Wan XH. Synthesis and stereospecific polymerization of a novel bulky styrene derivative. Macromolecules. 2016;49:2502–10.

    Article  CAS  Google Scholar 

  13. Liu DT, Wang MY, Wang ZC, Wu CJ, Pan YP, Cui DM. Stereoselective copolymerization of unprotected polar and nonpolar styrenes by an yttrium precursor: control of polar-group distribution and mechanism. Angew Chem Int Ed 2017;56:2714–9.

    Article  CAS  Google Scholar 

  14. Liu DT, Wang MY, Chai YJ, Wan XH, Cui DM. Self-activated coordination polymerization of alkoxystyrenes by a yttrium precursor: stereocontrol and mechanism. ACS Catal. 2019;9:2618–25.

    Article  CAS  Google Scholar 

  15. Xu ST, Wang JX, Zhai JJ, Wang F, Pan L, Shi XC. Imidazoline-2-imine Functionalized Fluorenyl Rare-Earth Metal Complexes: Synthesis and Their Application in the Polymerization ofortho-methoxystyrene. Organometallics. 2021;40:3323–30.

    Article  CAS  Google Scholar 

  16. Shi ZH, Guo F, Li Y, Hou ZM. Synthesis of amino-containing syndiotactic polystyrene as efficient polymer support for palladium nanoparticles. J Polym Sci, Part A: Polym Chem. 2015;53:5–9.

    Article  CAS  Google Scholar 

  17. Wang ZC, Liu DT, Cui DM. Statistically syndioselective coordination (Co)polymerization of 4-methylthiostyrene. Macromolecules. 2016;49:781–7.

    Article  CAS  Google Scholar 

  18. Zhang Z, Dou YL, Cai ZY, Liu DT, Li SH, Cui DM. Syndioselective coordination (Co)polymerization of alkyne-substituted Styrenes using rare-earth metal catalysts. Macromolecules. 2020;53:5895–902.

    Article  CAS  Google Scholar 

  19. Zhong YH, Wu Y, Cui DM. Highly Syndiotactic Coordination (Co)polymerization of para-Methylselenostyrene. Macromolecules. 2021;54:1754–9.

    Article  CAS  Google Scholar 

  20. Yeh KM, Lee CC, Chen Y. Poly(4-vinyltriphenylamine): optical, electrochemical properties and its new application as a host material of green phosphorescent Ir(ppy)3 dopant. Synth Met. 2008;158:565–71.

    Article  CAS  Google Scholar 

  21. Park JH, Yun C, Park MH, Do Y, Yoo S, Lee MH. Vinyl-type polynorbornenes with triarylamine side groups: a new class of soluble hole-transporting materials for OLEDs. Macromolecules. 2009;42:6840–3.

    Article  CAS  Google Scholar 

  22. Fang YK, Liu CL, Yang GY, Chen PC, Chen WC. New donor−acceptor random copolymers with pendent triphenylamine and 1,3,4-oxadiazole for high-performance memory device applications. Macromolecules. 2011;44:2604–12.

    Article  CAS  Google Scholar 

  23. Li YW, Xue LL, Xia HJ, Xu B, Wen SP, Tian WJ. Synthesis and properties of polythiophene derivatives containing triphenylamine moiety and their photovoltaic applications. J Polym Sci, Part A: Polym Chem. 2008;46:3970–84.

    Article  CAS  Google Scholar 

  24. Lee SK, Ahn T, Cho NS, Lee JI, Jung YK, Lee J et al. Synthesis of new polyfluorene copolymers with a comonomer containing triphenylamine units and their applications in white-light-emitting diodes. J Polym Sci, Part A: Polym Chem. 2007;45:1199–209.

    Article  CAS  Google Scholar 

  25. Mutaguchi D, Okumoto K, Ohsedo Y, Moriwaki K, Shirota Y. Development of a new class of hole-transporting and emitting vinyl polymers and their application in organic electroluminescent devices. Org Electron. 2003;4:49–59.

    Article  CAS  Google Scholar 

  26. Park MH, Huh JO, Do Y, Lee MH. Synthesis and properties of polyethylene with side-chain triphenylamines as hole-transporting materials. J Polym Sci, Part A: Polym Chem. 2008;46:5816–25.

    Article  CAS  Google Scholar 

  27. Tew GN, Pralle MU, Stupp SI. Supramolecular materials with electroactive chemical functions. Angew Chem Int Ed. 2000;39:517–21.

    Article  CAS  Google Scholar 

  28. Natori I, Natori S, Usui H, Sato H. Anionic Polymerization of 4-Diphenylaminostyrene: Characteristics of the Alkyllithium/N,N,N′,N′-Tetramethylethylenediamine System for Living Anionic Polymerization. Macromolecules. 2008;41:3852–8.

    Article  CAS  Google Scholar 

  29. Higashihara T, Ueda M. Living Anionic Polymerization of 4-Vinyltriphenylamine for Synthesis of Novel Block Copolymers Containing Low-Polydisperse Poly(4-vinyltriphenylamine) and Regioregular Poly(3-hexylthiophene) Segments. Macromolecules. 2010;43:8794–800.

    Article  CAS  Google Scholar 

  30. Kang BG, Jang J, Song Y, Kim MJ, Lee T, Lee JS. Well-Defined Block Copolymers with Triphenylamine and Isocyanate Moieties Synthesized via Living Anionic Polymerization for Polymer-Based Resistive Memory Applications: Effect of Morphological Structures on Nonvolatile Memory Performances. Macromolecules. 2014;47:8625–33.

    Article  CAS  Google Scholar 

  31. Kang BG, Jang J, Song Y, Kim MJ, Lee T, Lee JS. Facile anionic synthesis of a well-controlled thermally cross-linkable block copolymer for polymer-based resistive memory device applications. Polym Chem. 2015;6:4264–70.

    Article  CAS  Google Scholar 

  32. Lindner SM, Thelakkat M. Nanostructures of n-type organic semiconductor in a p-type matrix via self-assembly of block copolymers. Macromolecules. 2004;37:8832–5.

    Article  CAS  Google Scholar 

  33. Tsutsumi N, Murano T, Sakai W. Photorefractive response of polymeric composites with pendant triphenylamine moiety. Macromolecules. 2005;38:7521–7253.

    Article  CAS  Google Scholar 

  34. Lindner SM, Thelakkat M. Fluorescent dye-labeled polymers carrying triphenylamine, styrene, or acrylate pendant groups. Macromol Chem Phys. 2006;207:2084–92.

    Article  CAS  Google Scholar 

  35. Peter K, Thelakkat M. Synthesis and characterization of bifunctional polymers carrying tris(bipyridyl)ruthenium(II) and triphenylamine units. Macromolecules. 2003;36:1779–85.

    Article  CAS  Google Scholar 

  36. Bacher E, Bayerl M, Rudati P, Reckefuss N, Müller CD, Meerholz K et al. Synthesis and characterization of photo-cross-linkable hole-conducting polymers. Macromolecules. 2005;38:1640–7.

    Article  CAS  Google Scholar 

  37. Chuang CN, Chuang HJ, Wang YX, Chen SH, Huang JJ, Leung ML et al. Polymers with alkyl main chain pendent biphenyl carbazole or triphenylamine unit as host for polymer light emitting diodes. Polymer. 2012;53:4983–92.

    Article  CAS  Google Scholar 

  38. Lei L, Ma HC, Qin YF, Yang MY, Ma YC, Wang T et al. AIE-active florescent polymers: the design, synthesis and the cell imaging application. Polymer. 2017;133:151–9.

    Article  CAS  Google Scholar 

  39. Hreha RD, Haldi A, Domercq B, Barlow S, Kippelen B, Marder SR. Synthesis of acrylate and norbornene polymers with pendant 2,7-bis(diarylamino)fluorene hole-transport groups. Tetrahedron. 2004;60:7169–76.

    Article  CAS  Google Scholar 

  40. Bellmann E, Shaheen SE, Thayumanavan S, Barlow S, Grubbs RH, Marder SR et al. New triarylamine-containing polymers as hole transport materials in organic light-emitting diodes: effect of polymer structure and cross-linking on device characteristics. Chem Mater. 1998;10:1668–76.

    Article  CAS  Google Scholar 

  41. Kimyonok A, Domercq B, Haldi A, Cho JY, Carlise JR, Wang XY et al. Norbornene-based copolymers with iridium complexes and bis(carbazolyl)fluorene groups in their side-chains and their use in light-emitting diodes. Chem Mater 2007;19:5602–8.

    Article  CAS  Google Scholar 

  42. Hirao A, Hayashi M, Loykulnant S, Sugiyama K, Ryu SW, Haraguchi N et al. Precise syntheses of chain-multi-functionalized polymers, star-branched polymers, star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives. Prog Polym Sci. 2005;30:111–82.

    Article  CAS  Google Scholar 

  43. Hirao A, Tsunoda Y, Matsuo A, Sugiyama K, Watanabe T. Precise synthesis of dendron-like hyperbranched polymers and block copolymers by an iterative approach involving living anionic polymerization, coupling reaction, and transformation reaction. Macromol Res. 2006;14:272–86.

    Article  CAS  Google Scholar 

  44. Higashihara T, Inoue K, Nagura M, Hirao A. Successive synthesis of well-defined star-branched polymers by an iterative approach based on living anionic polymerization. Macromol Res. 2006;14:287–99.

    Article  CAS  Google Scholar 

  45. Hsu JC, Chen Y, Kakuchi T, Chen WC. Synthesis of Linear and Star-Shaped Poly[4-(diphenylamino)benzyl methacrylate]s by Group Transfer Polymerization and Their Electrical Memory Device Applications. Macromolecules. 2011;44:5168–77.

  46. Sessions LB, Cohen BR, Grubbs RB. Alkyne-Functional Polymers through Sonogashira Coupling to Poly(4-bromostyrene. Macromolecules. 2007;40:1926–33.

  47. Shin J, Chang Y, Nguyen T, Noh S, Bae C. Hydrophilic functionalization of syndiotactic polystyrene via a combination of electrophilic bromination and Suzuki-Miyaura reaction. J Polym Sci, Part A: Polym Chem. 2010;48:4335–43.

    Article  CAS  Google Scholar 

  48. Dobruchowska E, Glowacki I, Ulanski J, Sanetra J, Pielichowski J. Thermoluminescence of poly(9-vinylcarbazole) modified by substitution with halogens. Chem Phys. 2008;348:249–53.

    Article  CAS  Google Scholar 

  49. Slyusareva EA, Tomilina FN, Sizykh AG, Tankevich EY, Kuzubov AA, Ovchinnikova SG. The effect of halogen substitution on the structure and electronic spectra of fluorone dyes. Opt Spectrosc. 2012;112:671–8.

    Article  CAS  Google Scholar 

  50. Gayathri P, Karthikeyan S, Pannipara M, Sehemi AGA, Moon D, Anthony SP. Aggregation-enhanced emissive mechanofluorochromic carbazole-halogen positional isomers: tunable fluorescenceviaconformational polymorphism and crystallization-induced fluorescence switching. CrystEngComm. 2019;21:6604–12.

    Article  CAS  Google Scholar 

  51. Li XF, Nishiura M, Hu LH, Mori K, Hou ZM. Alternating and random copolymerization of isoprene and ethylene catalyzed by cationic half-sandwich scandium alkyls. J Am Chem Soc. 2009;131:13870–82.

    Article  CAS  PubMed  Google Scholar 

  52. Chien JCW, Tsai WM, Rausch MD. Isospecific polymerization of propylene catalyzed by rac-ethylenebis(indenyl)methylzirconium cation. J Am Chem Soc. 1991;113:8570–1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51803019) and the Fundamental Research Funds for the Central Universities (No. DUT20LAB138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefei Leng or Yang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Yu, J., Leng, X. et al. Syndioselective coordination (Co)polymerization of triphenylamine-substituted styrenes via a scandium catalyst system. Polym J 54, 775–782 (2022). https://doi.org/10.1038/s41428-022-00628-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00628-w

Search

Quick links