Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Nucleic acid-based fluorescent sensor systems: a review

Abstract

Nucleic acids have been actively applied to various sensing tools and future biodevices because of their high biocompatibility, as well as their programmable properties and functions. In this review, selected nucleic acid-based fluorescent sensors were introduced as powerful tools for exploring intracellular phenomena. Sensing systems in which readable fluorescence signals can be selectively “turned on” in the presence of target analytes are desired to obtain valuable biological information, including intracellular processes in living cells. In this context, we described the representative fluorescent signal generation mechanisms of the selected nucleic acid-based fluorescent sensors, including molecular beacon and quencher-free linear probes, as well as aptamer- and DNAzyme-based systems. In addition, recent examples of signal amplification systems for detecting small amounts of target analytes under isothermal conditions were highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Butler JE. Enzyme-linked immunosorbent assay. J Immunoass. 2000;21:165–209.

    Article  CAS  Google Scholar 

  2. Buchwalow IB, Minin EA, Boecker W. A multicolor fluorescence immunostaining technique for simultaneous antigen targeting. Acta Histochemica. 2005;107:143–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, et al. The real-time polymerase chain reaction. Mol Asp Med. 2006;27:95–125.

    Article  CAS  Google Scholar 

  4. Min T. FISH Techniques. Methods Mol Biol. 2003;220:193–212.

    CAS  PubMed  Google Scholar 

  5. Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Disco Today. 2017;22:823–33.

    Article  CAS  Google Scholar 

  6. Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater. 2018;3:17068.

    Article  CAS  Google Scholar 

  7. Kuzuya A, Ohya Y. DNA nanostructures as scaffolds for metal nanoparticles. Polym J. 2012;44:452–60.

    Article  CAS  Google Scholar 

  8. Madsen M, Gothelf KV. Chemistries for DNA nanotechnology. Chem Rev. 2019;119:6384–458.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan Y, Gu Z, Yao C, Luo D, Yang D. Nucleic acid–based functional nanomaterials as advanced cancer therapeutics. Small. 2019;15:1900172.

    Article  CAS  Google Scholar 

  10. Tan X, Jiab F, Wang P, Zhang K. Nucleic acid-based drug delivery strategies. J Control Release. 2020;323:240–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stephanopoulos N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem. 2020;6:364–405.

    Article  CAS  Google Scholar 

  12. Hamada S, Luo D. Enzyme-based fabrication of physical DNA hydrogels: new materials and applications. Polym J. 2020;52:891–8.

    Article  CAS  Google Scholar 

  13. Zhou W, Saran R, Liu J. Metal Sensing by DNA. Chem Rev. 2017;117:8272–325.

    Article  CAS  PubMed  Google Scholar 

  14. Peng H, Newbigging AM, Wang Z, Tao J, Deng W, Le XC, et al. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal Chem. 2018;90:190–207.

    Article  CAS  PubMed  Google Scholar 

  15. Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-acid structures as intracellular probes for live cells. Adv Mater. 2020;32:1901743.

    Article  CAS  Google Scholar 

  16. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14:303–8.

    Article  CAS  PubMed  Google Scholar 

  17. Pisa MD, Seitz O. Nucleic acid templated reactions for chemical biology. ChemMedChem. 2017;12:872–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tomoike F, Abe H. RNA imaging by chemical probes. Adv Drug Deliv Rev. 2019;147:44–58.

    Article  CAS  PubMed  Google Scholar 

  19. Santangelo P, Nitin N, Bao G. Nanostructured probes for RNA detection in living cells. Ann Biomed Eng. 2006;34:39–50.

    Article  PubMed  Google Scholar 

  20. Zhao D, Yang Y, Qu N, Chen M, Ma Z, Krueger CJ, et al. Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2’-O-methyl RNA molecular beacons. Biomaterials. 2016;100:172–83.

    Article  CAS  PubMed  Google Scholar 

  21. Bohländer PR, Abba ML, Bestvater F, Allgayer H, Wagenknecht HA. Two wavelength-shifting molecular beacons for simultaneous and selective imaging of vesicular miRNA-21 and miRNA-31 in living cancer cells. Org Biomol Chem. 2016;14:5001–6.

    Article  PubMed  CAS  Google Scholar 

  22. Park YK, Jung WY, Park MG, Song SK, Lee YS, Heo H, et al. Bioimaging of multiple piRNAs in a single breast cancer cell using molecular beacons. Med Chem Commun. 2017;8:2228–32.

    Article  CAS  Google Scholar 

  23. Maksimenko A, Ishchenko AA, Sanz G, Laval J, Elder RH, Saparbaev MK. A molecular beacon assay for measuring base excision repair activities. Biochem Biophys Res Commun. 2004;319:240–6.

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto N, Toga T, Hayashi R, Sugasawa K, Katayanagi K, Ide H, et al. Fluorescent probes for the analysis of DNA strand scission in base excision repair. Nucl Acids Res. 2010;8:e101.

    Article  CAS  Google Scholar 

  25. Toga T, Kuraoka I, Yasui A, Iwai S. A transfection reporter for the prevention of false-negative results in molecular beacon experiments. Anal Biochem. 2013;440:9–11.

    Article  CAS  PubMed  Google Scholar 

  26. Mirbahai L, Kershaw RM, Green RM, Hayden RE, Meldrum RA, Hodges NJ. Use of a molecular beacon to track the activity of base excision repair protein OGG1 in live cells. DNA Repair. 2010;9:144–52.

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Yang CJ, Medley CD, Benner SA, Tan W. Locked nucleic acid molecular beacons. J Am Chem Soc. 2005;127:15664–5.

    Article  CAS  PubMed  Google Scholar 

  28. Vilaivan T. Fluorogenic PNA probes. Beilstein J Org Chem. 2018;14:253–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murayama K, Kamiya Y, Kashida H, Asanuma H. Ultrasensitive molecular beacon designed with totally serinol nucleic acid (SNA) for monitoring mRNA in cells. ChemBioChem. 2015;16:1298–301.

    Article  CAS  PubMed  Google Scholar 

  30. Asanuma H, Murayama K, Kamiya Y, Kashida H. Design of photofunctional oligonucleotides by copolymerization of natural nucleobases with base surrogates prepared from acyclic scaffolds. Polym J. 2017;49:279–89.

    Article  CAS  Google Scholar 

  31. Kashida H, Takatsu T, Fujii T, Sekiguchi K, Liang X, Niwa K, et al. In-stem molecular beacon containing a pseudo base pair of threoninol nucleotides for the removal of background emission. Angew Chem Int Ed. 2009;48:7044–7.

    Article  CAS  Google Scholar 

  32. Berndl S, Wagenknecht HA. Fluorescent color readout of DNA hybridization with thiazole orange as an artificial DNA base. Angew Chem Int Ed. 2009;48:2418–21.

    Article  CAS  Google Scholar 

  33. Saito Y, Shinohara Y, Bag SS, Takeuchi Y, Matsumoto K, Saito I. Ends free and self-quenched molecular beacon with pyrene labeled pyrrolocytidine in the middle of the stem. Tetrahedron. 2009;65:934–9.

    Article  CAS  Google Scholar 

  34. Häner R, Biner SM, Langenegger SM, Meng T, Malinovskii VL. A highly sensitive, excimer-controlled molecular beacon. Angew Chem Int Ed. 2010;49:1227–30.

    Article  CAS  Google Scholar 

  35. Berndl S, Dimitrov SD, Menacher F, Fiebig T, Wagenknecht HA. Thiazole orange dimers in DNA: fluorescent base substitutions with hybridization readout. Chem Eur J. 2016;22:2386–95.

    Article  CAS  PubMed  Google Scholar 

  36. Miyoshi Y, Ohtsuki T, Kashida H, Asanuma H, Watanabe K. In-stem molecular beacon targeted to a 5’-region of tRNA inclusive of the D arm that detects mature tRNA with high sensitivity. PLoS ONE. 2019;14:e0211505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pan W, Yang H, Li N, Yang L, Tang B. Simultaneous visualization of multiple mRNAs and matrix metalloproteinases in living cells using a fluorescence nanoprobe. Chem Eur J. 2015;21:6070–3.

    Article  CAS  PubMed  Google Scholar 

  38. Ishiguro T, Saitoh J, Yawata H, Otsuka M, Inoue T, Sugiura Y. Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides. Homogeneous quantitative monitoring of in vitro transcription. Nucl Acids Res. 1996;24:4992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hövelmann F, Gaspar I, Ephrussi A, Seitz O. Brightness enhanced DNA FIT-probes for wash-free RNA imaging in tissue. J Am Chem Soc. 2013;135:19025–32.

    Article  PubMed  CAS  Google Scholar 

  40. Svanvik N, Westman G, Wang D, Kubista M. Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal Biochem. 2000;281:26–35.

    Article  CAS  PubMed  Google Scholar 

  41. Köhler O, Seitz O. Thiazole orange as fluorescent universal base in peptide nucleic acids. Chem Commun. 2003:2938–9.

  42. Köhler O, Jarikote DV, Seitz O. Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. ChemBioChem. 2005;6:69–77.

    Article  PubMed  CAS  Google Scholar 

  43. Socher E, Jarikote DV, Knoll A, Röglin L, Burmeister J, Seitz O. FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Anal Biochem. 2008;375:318–30.

    Article  CAS  PubMed  Google Scholar 

  44. Bethge L, Singh I, Seitz O. Designed thiazole orange nucleotides for the synthesis of single labelled oligonucleotides that fluoresce upon matched hybridization. Org Biomol Chem. 2010;8:2439–48.

    Article  CAS  PubMed  Google Scholar 

  45. Knoll A, Kankowski S, Schöllkopf S, Meier JC, Seitz O. Chemo-biological mRNA imaging with single nucleotide specificity. Chem Commun. 2019;55:14817–20.

    Article  CAS  Google Scholar 

  46. Tepper O, Zheng H, Appella DH, Yavin E. Cyclopentane FIT-PNAs: bright RNA sensors. Chem Commun. 2021;57:540–3.

    Article  CAS  Google Scholar 

  47. Sato T, Sato Y, Nishizawa S. Triplex-forming peptide nucleic acid probe having thiazole orange as a base surrogate for fluorescence sensing of double-stranded RNA. J Am Chem Soc. 2016;138:9397–400.

    Article  CAS  PubMed  Google Scholar 

  48. Sato T, Sato Y, Nishizawa S. Optimization of the alkyl linker of TO base surrogate in triplex-forming PNA for enhanced binding to double-stranded RNA. Chem Eur J. 2017;23:4079–88.

    Article  CAS  PubMed  Google Scholar 

  49. Tanabe T, Sato T, Sato Y, Nishizawa S. Design of a fluorogenic PNA probe capable of simultaneous recognition of 3’-overhang and double-stranded sequences of small interfering RNAs. RSC Adv. 2018;8:42095–9.

    Article  CAS  Google Scholar 

  50. Ikeda S, Okamoto A. Hybridization-Sensitive On–off DNA probe: application of the exciton coupling effect to effective fluorescence quenching. Chem Asian J. 2008;3:958–68.

    Article  CAS  PubMed  Google Scholar 

  51. Ikeda S, Kubota T, Kino K, Okamoto A. Sequence dependence of fluorescence emission and quenching of doubly thiazole orange labeled DNA: effective design of a hybridization-sensitive probe. Bioconjugate Chem. 2008;19:1719–25.

    Article  CAS  Google Scholar 

  52. Kubota T, Ikeda S, Yanagisawa H, Yuki M, Okamoto A. Hybridization-sensitive fluorescent probe for long-term monitoring of intracellular RNA. Bioconjugate Chem. 2009;20:1256–61.

    Article  CAS  Google Scholar 

  53. Ikeda S, Kubota T, Yuki M, Okamoto A. Exciton-controlled hybridization-sensitive fluorescent probes: multicolor detection of nucleic acids. Angew Chem Int Ed. 2009;48:6480–4.

    Article  CAS  Google Scholar 

  54. Kubota T, Ikeda S, Okamoto A. Doubly thiazole orange-labeled DNA for live cell RNA imaging. Bull Chem Soc Jpn. 2009;82:110–7.

    Article  CAS  Google Scholar 

  55. Okamoto A. ECHO probes: a concept of fluorescence control for practical nucleic acid sensing. Chem Soc Rev. 2011;40:5815–28.

    Article  CAS  PubMed  Google Scholar 

  56. Ikeda S, Yanagisawa H, Nakamura A, Wang DO, Yukia M, Okamoto A. Hybridization-sensitive fluorescence control in the near-infrared wavelength range. Org Biomol Chem. 2011;9:4199–204.

    Article  CAS  PubMed  Google Scholar 

  57. Oomoto I, Suzuki-Hirano A, Umeshima H, Han YW, Yanagisawa H, Carlton P, et al. ECHO-liveFISH: in vivo RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues. Nucl Acids Res. 2015;43:e126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen J, Morihiro K, Fukui D, Guo L, Okamoto A. Live-cell sensing of telomerase activity by using hybridization-sensitive fluorescent oligonucleotide probes. ChemBioChem. 2020;21:1022–7.

    Article  CAS  PubMed  Google Scholar 

  59. Hrdlicka PJ, Babu BR, Sørensen MD, Harrit N, Wengel J. Multilabeled pyrene-functionalized 2’-amino-LNA probes for nucleic acid detection in homogeneous fluorescence assays. J Am Chem Soc. 2005;127:13293–9.

    Article  CAS  PubMed  Google Scholar 

  60. Asanuma H, Akahane M, Kondo N, Osawa T, Kato T, Kashida H. Quencher-free linear probe with multiple fluorophores on an acyclic scaffold. Chem Sci. 2012;3:3165–9.

    Article  CAS  Google Scholar 

  61. Ro JJ, Lee HJ, Kim BH. PyA-cluster system for the detection and imaging of miRNAs in living cells through double-three-way junction formation. Chem Commun. 2018;54:7471–4.

    Article  CAS  Google Scholar 

  62. Paige JS, Wu KY, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333:642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paige JS, Nguyen-Duc T, Song W, Jaffrey SR. Fluorescence imaging of cellular metabolites with RNA. Science. 2012;335:1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Strack RL, Song W, Jaffrey SR. Using Spinach-based sensors for fluorescence imaging of intracellular metabolites and proteins in living bacteria. Nat Protoc. 2014;9:146–55.

    Article  CAS  PubMed  Google Scholar 

  65. Song W, Strack RL, Jaffrey SR. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods. 2013;10:873–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kolpashchikov DM, Spelkov AA. Binary (split) light-up aptameric sensors. Angew Chem Int Ed. 2021;60:4988–99.

    Article  CAS  Google Scholar 

  67. Babendure JR, Adams SR, Tsien RY. Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc. 2003;125:14716–17.

    Article  CAS  PubMed  Google Scholar 

  68. Sando S, Narita A, Hayami M, Aoyama Y. Transcription monitoring using fused RNA with a dye-binding light-up aptamer as a tag: a blue fluorescent RNA. Chem Commun. 2008:3858–60.

  69. Strack RL, Disney MD, Jaffrey SR. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat–containing RNA. Nat Methods. 2013;10:1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Filonov GS, Moon JD, Svensen N, Jaffrey SR. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc. 2014;136:16299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dolgosheina EV, Jeng SCY, Panchapakesan SSS, Cojocaru R, Chen PSK, Wilson PD, et al. RNA Mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol. 2014;9:2412–20.

    Article  CAS  PubMed  Google Scholar 

  72. Warner KD, Chen MC, Song W, Strack RL, Thorn A, Jaffrey SR, et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat Struct Mol Biol. 2014;21:658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Okuda M, Fourmy D, Yoshizawa S. Use of Baby Spinach and Broccoli for imaging of structured cellular RNAs. Nucl Acids Res. 2017;45:1404–15.

    Article  CAS  PubMed  Google Scholar 

  74. Autour A, Jeng SCY, Cawte AD, Abdolahzadeh A, Galli A, Panchapakesan SSS. David Rueda, Ryckelynck M, Unrau PJ. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat Commun. 2018;9:656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Warner KD, Sjekloća L, Song W, Filonov GS, Jaffrey SR, Ferré-D’Amaré AR. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat Chem Biol. 2017;13:1195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Song W, Filonov GS, Kim H, Hirsch M, Li X, Moon JD, et al. Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat Chem Biol. 2017;13:1187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu Q, Shi J, Mudiyanselage APKKK, Wu R, Zhao B, Zhou M, et al. Genetically encoded RNA-based sensors for intracellular imaging of silver ions. Chem Commun. 2019;55:707–10.

    Article  CAS  Google Scholar 

  78. Gu Y, Huang LJ, Zhao W, Zhang TT, Cui MR, Yang XJ, et al. Living-cell microRNA imaging with self-assembling fragments of fluorescent protein-mimic RNA aptamer. ACS Sens. 2021;6:2339–47.

    Article  CAS  PubMed  Google Scholar 

  79. Sando S, Narita A, Aoyama Y. Light-up Hoechst–DNA aptamer Pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye. ChemBioChem. 2007;8:1795–803.

    Article  CAS  PubMed  Google Scholar 

  80. Kato T, Shimada I, Kimura R, Hyuga M. Light-up fluorophore–DNA aptamer pair for label-free turn-on aptamer sensors. Chem Commun. 2016;52:4041–4.

    Article  CAS  Google Scholar 

  81. Wang H, Wang J, Sun N, Cheng H, Chen H, Pei R. Selection and characterization of malachite green aptamers for the development of light–up probes. ChemistrySelect. 2016;1:1571–4.

    Article  CAS  Google Scholar 

  82. Wang H, Wang J, Wang Q, Chen X, Liu M, Chen H, et al. Selection and characterization of dimethylindole red DNA aptamers for the development of light-up fluorescent probes. Talanta 2017;168:217–21.

    Article  CAS  PubMed  Google Scholar 

  83. Connelly RP, Madalozzo PF, Mordeson JE, Pratt AD, Gerasimova YV. Promiscuous dye binding by a light-up aptamer: application for label-free multi-wavelength biosensing. Chem Commun. 2021;57:3672–5.

    Article  CAS  Google Scholar 

  84. Lin S, Gao W, Tian Z, Yang C, Lu L, Mergny JL, et al. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci. 2015;6:4284–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin S, Lua L, Liu JB, Liu C, Kang TS, Yang C, et al. A G-quadruplex-selective luminescent iridium(III) complex and its application by long lifetime. Biochim Biophys Acta. 2017;1861:1448–54.

    Article  CAS  Google Scholar 

  86. Thoa TTT, Minagawa N, Aigaki T, Ito Y, Uzawa T. Regulation of photosensitization processes by an RNA aptamer. Sci Rep. 2017;7:43272.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Min I, Uzawa T, Serizawa T, Ito Y. “One stroke drawing” of poly(ribonucleic acids) with different aptamer functions for sensing probes. Polym J. 2021;53:667–75.

    Article  CAS  Google Scholar 

  88. Jani MS, Zou J, Veetil AT, Krishnan Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat Chem Biol. 2020;660:660–6.

    Article  CAS  Google Scholar 

  89. Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. PNAS 2004;101:15275–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Choi HMT, Chang JY, Trinh LA, Padilla JE, Fraser SE, Pierce NA. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol. 2010;28:1208–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Marrasa SAE, Bushkina Y, Tyagi S. High-fidelity amplified FISH for the detection and allelic discrimination of single mRNA molecules. PNAS. 2019;116:13921–6.

    Article  CAS  Google Scholar 

  92. Cheglakov Z, Cronin TM, He C, Weizmann Y. Live cell microRNA imaging using cascade hybridization reaction. J Am Chem Soc. 2015;137:6116–9.

    Article  CAS  PubMed  Google Scholar 

  93. Chen J, Yang HH, Yin W, Zhang Y, Ma Y, Chen D, et al. Metastable dumbbell probe-based hybridization chain reaction for sensitive and accurate imaging of intracellular-specific microRNAs in situ in living cells. Anal Chem. 2019;91:4625–31.

    Article  CAS  PubMed  Google Scholar 

  94. Yin P, Choi HMT, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nat. 2008;451:318–22.

    Article  CAS  Google Scholar 

  95. Li B, Ellington AD, Chen X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucl Acids Res. 2011;39:e110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu C, Zhang SCL, Teng IT, Qiu L, Li J, Liu Y, et al. A Nonenzymatic hairpin DNA cascade reaction provides high signal gain of mRNA imaging inside live cells. J Am Chem Soc. 2015;137:4900–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mudiyanselage APKKK, Yu Q, Leon-Duque MA, Zhao B, Wu R, You M. Genetically encoded catalytic hairpin assembly for sensitive RNA imaging in live cells. J Am Chem Soc. 2018;140:8739–45.

    Article  CAS  Google Scholar 

  98. Wu H, Zhou WJ, Liu L, Fan Z, Tang H, Yu RQ, et al. In vivo mRNA imaging based on tripartite DNA probe mediated catalyzed hairpin assembly. Chem Commun. 2020;56:8782–5.

    Article  CAS  Google Scholar 

  99. Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol. 1994;1:223–9.

    Article  CAS  PubMed  Google Scholar 

  100. Wu P, Hwang K, Lan T, Lu Y. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc. 2013;135:5254–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Young DD, Lively MO, Deiters A. Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. J Am Chem Soc. 2010;132:6183–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou M, Liang X, Mochizuki T, Asanuma H. A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. Angew Chem Int Ed. 2010;49:2167–70.

    Article  CAS  Google Scholar 

  103. Hwang K, Wu P, Kim T, Lei L, Wang Y, Lu Y. Photocaged DNAzymes as a general method for sensing metal ions in living cells. Angew Chem Int Ed. 2014;53:13798–802.

    Article  CAS  Google Scholar 

  104. Yang C, Yin X, Huan SY, Chen L, Hu XX, Xiong MY, et al. Two-photon DNAzyme−gold nanoparticle probe for imaging intracellular metal ions. Anal Chem. 2018;90:3118–23.

    Article  CAS  PubMed  Google Scholar 

  105. Watanabe Y, Fujimoto K. Complete Photochemical Regulation of 8–17 DNAzyme activity by using reversible DNA photo-crosslinking. ChemBioChem. 2020;21:3244–8.

    Article  CAS  PubMed  Google Scholar 

  106. Liu J, Lu Y. Rational design of “Turn-On” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed. 2007;46:7587–90.

    Article  CAS  Google Scholar 

  107. Shimron S, Elbaz J, Henning A, Willner I. Ion-induced DNAzyme switches. Chem Commun. 2010;46:3250–2.

    Article  CAS  Google Scholar 

  108. Takezawa Y, Nakama T, Shionoya M. Enzymatic synthesis of Cu(II)-responsive deoxyribozymes through polymerase incorporation of artificial ligand-type nucleotides. J Am Chem Soc. 2019;141:19342–50.

    Article  CAS  PubMed  Google Scholar 

  109. Takezawa Y, Hu L, Nakama T, Shionoya M. Sharp switching of DNAzyme activity through the formation of a CuII-mediated carboxyimidazole base pair. Angew Chem Int Ed. 2020;59:21488–92.

    Article  CAS  Google Scholar 

  110. Nakama T, Takezawa Y, Sasaki D, Shionoya M. Allosteric regulation of DNAzyme activities through intrastrand transformation induced by Cu(II)-mediated artificial base pairing. J Am Chem Soc. 2020;142:10153–62.

    Article  CAS  PubMed  Google Scholar 

  111. Sando S, Narita A, Sasaki T, Aoyama Y. Locked TASC probes for homogeneous sensing of nucleic acids and imaging of fixed E. coli cells. Org Biomol Chem. 2005;3:1002–7.

    Article  CAS  PubMed  Google Scholar 

  112. Kolpashchikov DM. A binary deoxyribozyme for nucleic acid analysis. ChemBioChem. 2007;8:2039–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mokany E, Bone SM, Young PE, Doan TB, Todd AV. MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches. J Am Chem Soc. 2010;132:1051–9.

    Article  CAS  PubMed  Google Scholar 

  114. Gerasimova YV, Cornett E, Kolpashchikov DM. RNA-cleaving deoxyribozyme sensor for nucleic acid analysis: the limit of detection. ChemBioChem. 2010;11:811–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hanpanich O, Oyanagi T, Shimada N, Maruyama A. Cationic copolymer-chaperoned DNAzyme sensor for microRNA detection. Biomaterials. 2019;225:119535.

    Article  CAS  PubMed  Google Scholar 

  116. Hanpanich O, Maruyama A. Cationic comb-type copolymer as an artificial chaperone. Polym J. 2019;51:935–43.

    Article  CAS  Google Scholar 

  117. Peng H, Li XF, Zhang H, Le XC. A microRNA-initiated DNAzyme motor operating in living cells. Nat Comm. 2017;8:14378.

    Article  Google Scholar 

  118. Wu Y, Huang J, Yang X, Yang Y, Quan K, Xie N, et al. Gold nanoparticle loaded split-DNAzyme probe for amplified miRNA detection in living cells. Anal Chem. 2017;89:8377–83.

    Article  CAS  PubMed  Google Scholar 

  119. Bakshi SF, Guz N, Zakharchenko A, Deng H, Tumanov AV, Woodworth CD, et al. Magnetic field-activated sensing of mRNA in living cells. J Am Chem Soc. 2017;139:12117–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wei J, Wang H, Wu Q, Gong X, Ma K, Liu X, et al. A smart, autocatalytic, DNAzyme biocircuit for in vivo, Amplified, MicroRNA Imaging. Angew Chem Int Ed. 2020;59:5965–71.

    Article  CAS  Google Scholar 

  121. Wang H, Chen Y, Wang H, Liu X, Zhou X, Wang F. DNAzyme-Loaded Metal–Organic Frameworks (MOFs) for Self-Sufficient Gene Therapy. Angew Chem Int Ed. 2019;58:7380–4.

    Article  CAS  Google Scholar 

  122. Xiao L, Gu C, Xiang Y. Orthogonal activation of RNA-cleaving DNAzymes in live cells by reactive oxygen species. Angew Chem Int Ed. 2019;58:14167–72.

    Article  CAS  Google Scholar 

  123. Banno A, Higashi S, Shibata A, Ikeda M. A stimuli-responsive DNAzyme displaying Boolean logic-gate responses. Chem Commun. 2019;55:1959–62.

    Article  Google Scholar 

  124. Wang Q, Tan K, Wang H, Shang J, Wan Y, Liu X, et al. Orthogonal demethylase-activated deoxyribozyme for intracellular imaging and gene regulation. J Am Chem Soc. 2021;143:6895–904.

    Article  CAS  PubMed  Google Scholar 

  125. Ebrahimi SB, Samanta D, Mirkin CA. DNA-based nanostructures for live-cell analysis. J Am Chem Soc. 2020;142:11343–56.

    Article  CAS  PubMed  Google Scholar 

  126. Wang DX, Wang J, Wang YX, Du YC, Huang Y, Tang AN, et al. DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci. 2021;12:7602–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fisher TL, Terhorst T, Cao X, Wagner RW. Intracellular disposition and metabolism of fluorescently-labled unmodified and modified oligouncleotides microijjected into mammalian cells. Nucleic Acids Res. 1993;21:3857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Deliv Rev. 2019;144:133–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (C) of the Japan Society for the Promotion of Science (20K05563, AS) and JSPS Research Fellowship for Young Scientists (SLH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aya Shibata or Masato Ikeda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, A., Higashi, S.L. & Ikeda, M. Nucleic acid-based fluorescent sensor systems: a review. Polym J 54, 751–766 (2022). https://doi.org/10.1038/s41428-022-00623-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00623-1

This article is cited by

Search

Quick links