Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Uniform amphiphilic cellulose nanocrystal films

Abstract

We describe the synthesis of highly amphiphilic cellulose nanocrystals (CNCs) and their assembly into ultrathin smooth monolayers and multilayers by the Langmuir–Blodgett technique. The amphiphilicity of the CNCs and hence their solubility in chloroform was tuned by controlling the extent of surface functionalization with hydrophobic –C8 groups and the concentration of the carboxylic acid groups at the reducing end. For the most amphiphilic CNCs, a well-defined LB isotherm with three distinct phases was observed without the use of any additives. The assembled monolayers were exceptionally stable at the air/water interface for over 3 h, allowing their facile transfer to both hydrophilic and hydrophobic substrates, resulting in smooth films. A monolayer of amphiphilic CNCs deposited by the upstroke on a hydrophilic substrate showed good alignment along the substrate, while random orientation was observed on a hydrophobic substrate. Atomic force microscopy study of the monolayer transferred at a surface pressure of 15–20 mN/m showed complete monolayer coverage. Smooth multilayers were also fabricated by the sequential deposition of up to six monolayers. The excellent control over film formation afforded by the combination of the amphiphilicity of the CNCs, LB assembly, and the use of organic solvent make this methodology useful for emerging optical and electronic applications of CNCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vendra VK, Wu L, Krishnan S. Polymer thin films for biomedical applications. In: Kumar CSSR, editor. Nanotechnologies for the life sciences. Weinheim: WILEY-VCH; 2011. p. 1–39.

  2. Zelikin AN. Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS Nano. 2010;4:2494–509.

    Article  CAS  Google Scholar 

  3. Piqué A, Auyeung RCY, Stepnowski JL, Weir DW, Arnold CB, McGill RA, et al. Laser processing of polymer thin films for chemical sensor applications. Surf Coat Technol 2003;163-164:293–9.

    Article  Google Scholar 

  4. Bang J, Jeong U, Ryu DY, Russell TP, Hawker CJ. Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv Mater. 2009;21:4769–92.

    Article  CAS  Google Scholar 

  5. Zhao J, Green PF. Spatial organization of nanoparticles in thin film block copolymer/homopolymer hosts. Macromolecules. 2014;47:4337–45.

    Article  CAS  Google Scholar 

  6. Oded M, Kelly ST, Gilles MK, Müller AHE, Shenhar R. From dots to doughnuts: two-dimensionally confined deposition of polyelectrolytes on block copolymer templates. Polymer. 2016;107:406–14.

    Article  CAS  Google Scholar 

  7. Hook AL, Chang CY, Yang J, Luckett J, Cockayne A, Atkinson S, et al. Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol. 2012;30:868–75.

    Article  CAS  Google Scholar 

  8. Zheng F, Zuo B, Zhu Y, Yang J, Wang X. Probing substrate effects on relaxation dynamics of ultrathin poly(vinyl acetate) films by dynamic wetting of water droplets on their surfaces. Soft Matter. 2013;9:11680–9.

    Article  CAS  Google Scholar 

  9. Kontturi E, Tammelin T, Österberg M. Cellulose—model films and the fundamental approach. Chem Soc Rev. 2006;35:1287–304.

    Article  CAS  Google Scholar 

  10. Spirk S, Nypelö T, Kontturi E. Editorial: biopolymer thin films and coatings. Front Chem. 2019;7:736.

    Article  Google Scholar 

  11. Strasser S, Niegelhell K, Kaschowitz M, Markus S, Kargl R, Stana-Kleinschek K, et al. Exploring nonspecific protein adsorption on lignocellulosic amphiphilic bicomponent films. Biomacromolecules. 2016;17:1083–92.

    Article  CAS  Google Scholar 

  12. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–500.

    Article  CAS  Google Scholar 

  13. Gunnars S, Wågberg L, Cohen Stuart MA. Model films of cellulose: I. Method development and initial results. Cellulose. 2002;9:239–49.

    Article  CAS  Google Scholar 

  14. Nasseri R, Deutschman CP, Han L, Pope MA, Tam KC. Cellulose nanocrystals in smart and stimuli-responsive materials: a review. Mater Today Adv. 2020;5:100055.

    Article  Google Scholar 

  15. Trache D, Thakur VK, Boukherroub R. Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications. Nanomater. 2020;10:1523.

    Article  CAS  Google Scholar 

  16. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, et al. Nanocellulose: from fundamentals to advanced applications. Front Chem. 2020;8:392.

    Article  CAS  Google Scholar 

  17. Edgar CD, Gray DG. Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 2003;10:299–306.

    Article  CAS  Google Scholar 

  18. Tao H, Lavoine N, Jiang F, Tang J, Lin N. Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horiz. 2020;5:607–27.

    Article  CAS  Google Scholar 

  19. Hoeger I, Rojas OJ, Efimenko K, Velev OD, Kelley SS. Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter. 2011;7:1957–67.

    Article  CAS  Google Scholar 

  20. Habibi Y, Foulon L, Aguié-Béghin V, Molinari M, Douillard R. Langmuir–Blodgett films of cellulose nanocrystals: preparation and characterization. J Colloid Interface Sci. 2007;316:388–97.

    Article  CAS  Google Scholar 

  21. Habibi Y, Hoeger I, Kelley SS, Rojas OJ. Development of Langmuir−Schaeffer cellulose nanocrystal monolayers and their interfacial behaviors. Langmuir. 2010;26:990–1001.

    Article  CAS  Google Scholar 

  22. van den Berg MEH, Kuster S, Windhab EJ, Adamcik J, Mezzenga R, Geue T, et al. Modifying the contact angle of anisotropic cellulose nanocrystals: effect on interfacial rheology and structure. Langmuir. 2018;34:10932–42.

    Article  Google Scholar 

  23. Bashar MM, Ohara H, Zhu H, Yamamoto S, Matsui J, Miyashita T, et al. Cellulose nanofiber nanosheet multilayers by the Langmuir–Blodgett technique. Langmuir. 2019;35:8052–9.

    Article  CAS  Google Scholar 

  24. Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN. Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett. 2012;1:867–70.

    Article  CAS  Google Scholar 

  25. Tian C, Fu S, Habibi Y, Lucia LA. Polymerization topochemistry of cellulose nanocrystals: a function of surface dehydration control. Langmuir. 2014;30:14670–9.

    Article  CAS  Google Scholar 

  26. Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer. 2009;50:4552–63.

    Article  Google Scholar 

  27. Peng SX, Chang H, Kumar S, Moon RJ, Youngblood JP. A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification. Cellulose. 2016;23:1825–46.

    Article  CAS  Google Scholar 

  28. Trinh BM, Mekonnen T. Hydrophobic esterification of cellulose nanocrystals for epoxy reinforcement. Polymer. 2018;155:64–74.

    Article  CAS  Google Scholar 

  29. Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, et al. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules. 2011;12:2997–3006.

    Article  CAS  Google Scholar 

  30. Viet D, Beck-Candanedo S, Gray DG. Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose. 2007;14:109–13.

    Article  CAS  Google Scholar 

  31. Zoppe JO, Dupire AVM, Lachat TGG, Lemal P, Rodriguez-Lorenzo L, Petri-Fink A, et al. Cellulose nanocrystals with tethered polymer chains: chemically patchy versus uniform decoration. ACS Macro Lett. 2017;6:892–7.

    Article  CAS  Google Scholar 

  32. Prochazkova S, Vårum KM, Ostgaard K. Quantitative determination of chitosans by ninhydrin. Carbohydr Polym. 1999;38:115–22.

    Article  CAS  Google Scholar 

  33. Poli E, Chaleix V, Damia C, Hjezi Z, Champion E, Sol V. Efficient quantification of primary amine functions grafted onto apatite ceramics by using two UV-Vis spectrophotometric methods. Anal Methods. 2014;6:9622–7.

    Article  CAS  Google Scholar 

  34. Risteen B, Delepierre G, Srinivasarao M, Weder C, Russo P, Reichmanis E, et al. Thermally switchable liquid crystals based on cellulose nanocrystals with patchy polymer grafts. Small. 2018;14:1802060.

    Article  Google Scholar 

  35. Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA. Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson. 1982;49:341–5.

    CAS  Google Scholar 

  36. Fung BM, Khitrin AK, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson. 2000;142:97–101.

    Article  CAS  Google Scholar 

  37. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L. Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules. 2009;10:2144–51.

    Article  CAS  Google Scholar 

  38. Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K. Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ. 2021;29:130–42.

  39. Beroual M, Trache D, Mehelli O, Boumaza L, Tarchoun AF, Derradji M, et al. Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste Biomass Valoriz. 2021;12:2779–93.

  40. Rodríguez Niño MR, Lucero A, Rodríguez Patino JM. Relaxation phenomena in phospholipid monolayers at the air–water interface. Colloids Surf A. 2008;320:260–70.

    Article  Google Scholar 

  41. Chen X, Xue Q-B, Yang K-Z, Zhang Q-Z. Monolayers and Langmuir-Blodgett films of a liquid-crystalline polysiloxane with a schiff base mesogenic unit in the side chain. Langmuir. 1995;11:4082–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Wisconsin-Madison, Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. The authors gratefully acknowledge the use of facilities and instrumentation at the University of Wisconsin-Madison Wisconsin Centers for Nanoscale Technology partially supported by the NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR1720415). The NMR instrumentation in the Paul Bender Chemistry Instrumentation Center was supported by a generous gift from Paul J. and Margaret M. Bender and UW2020. NT was funded by a Science Achievement Scholarship of Thailand. We gratefully acknowledge the CNC samples from Forest Product Laboratories, in Madison, WI, from Dr. Junyong (J.Y.) Zhu.

Author information

Authors and Affiliations

Authors

Contributions

HK synthesized, characterized, and assembled the CNCs. JS assisted with LB assembly, characterization and analysis of the data. NT assisted in the optimization of LB studies. CMC provided expertise on 13C NMR characterization. JHD contributed toward substrate preparation. All authors contributed toward writing the manuscript.

Corresponding author

Correspondence to Padma Gopalan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, H., Sun, J., Clewett, C.F.M. et al. Uniform amphiphilic cellulose nanocrystal films. Polym J 54, 539–550 (2022). https://doi.org/10.1038/s41428-021-00611-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00611-x

This article is cited by

Search

Quick links