Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Analysis of the formation mechanism of polyion complexes of polysaccharides by molecular dynamics simulation with oligosaccharides

Abstract

Polysaccharides have been extensively studied as biomaterials in various fields for their biocompatibility, biodegradability, and biological functions. To obtain water-insoluble materials from polysaccharides, polyion complexes (PICs) formed between cationic and anionic polysaccharides have been widely used in drug delivery systems and tissue engineering. Understanding the atomic interaction mechanism of oppositely charged polysaccharides is important in the design and application of PIC-based materials. In this work, the interaction between single-stranded chitosan and four kinds of anionic oligosaccharides was systematically investigated to elucidate the effects of the functional groups of chitosan and chemical species of anionic oligosaccharides on complex formation using molecular dynamics (MD) simulation with atomic detail. We verified that chitosan and anionic oligosaccharides form complexes, regardless of the functional groups of chitosan. For ‒NH3+ chitosan, due to the strong electrostatic interaction, a higher number of hydrogen bonds between ‒NH3+ in chitosan and anionic charged groups of anionic oligosaccharides were formed. Our results also suggested that ‒NH2 and ‒NHAc chitosan could form complexes with anionic oligosaccharides due to hydrogen bonds. These findings might be important for the design and stabilization of PICs based on polysaccharides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salbach J, Rachner TD, Rauner M, Hempel U, Anderegg U, Franz S, et al. Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med. 2012;90:625–35.

    Article  PubMed  Google Scholar 

  2. Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr Polym Technol Appl. 2021;2:100067.

    Google Scholar 

  3. Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol. 2014;25:448–60.

    Article  CAS  Google Scholar 

  4. Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev. 2000;13:523–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–98.

    Article  CAS  PubMed  Google Scholar 

  6. Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989;9:21–32.

    Article  CAS  PubMed  Google Scholar 

  7. Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol. 2003;13:612–20.

    Article  CAS  PubMed  Google Scholar 

  8. Volpi N. Quality of different chondroitin sulfate preparations in relation to their therapeutic activity. J Pharm Pharm. 2009;61:1271–80.

    Article  CAS  Google Scholar 

  9. Necas J, Bartosikoval L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med. 2008;53:397–411.

    Article  CAS  Google Scholar 

  10. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39.

    Article  CAS  PubMed  Google Scholar 

  11. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sugahara K, Kitagawa H. Heparin and heparan sulfate biosynthesis. IUBMB Life. 2002;54:163–75.

    Article  CAS  PubMed  Google Scholar 

  13. Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed Engl. 2002;41:391–412.

    Article  PubMed  Google Scholar 

  14. Capanema NSV, Mansur AAP, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol. 2018;106:1218–34.

    Article  CAS  PubMed  Google Scholar 

  15. Reza AT, Nicoll SB. Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater. 2010;6:179–86.

    Article  CAS  PubMed  Google Scholar 

  16. Ogushi Y, Sakai S, Kawakami K. Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J Biosci Bioeng. 2007;104:30–3.

    Article  CAS  PubMed  Google Scholar 

  17. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49:780–92.

    Article  CAS  Google Scholar 

  18. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26:1–21.

    Article  CAS  PubMed  Google Scholar 

  19. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67.

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigues MN, Oliveira MB, Costa RR, Mano JF. Chitosan/chondroitin sulfate membranes produced by polyelectrolyte complexation for cartilage engineering. Biomacromolecules. 2016;17:2178–88.

    Article  CAS  PubMed  Google Scholar 

  21. Sharma S, Swetha KL, Roy A. Chitosan-chondroitin sulfate based polyelectrolyte complex for effective management of chronic wounds. Int J Biol Macromol. 2019;132:97–108.

    Article  CAS  PubMed  Google Scholar 

  22. Yeh MK, Cheng KM, Hu CS, Huang YC, Young JJ. Novel protein-loaded chondroitin sulfate-chitosan nanoparticles: preparation and characterization. Acta Biomater. 2011;7:3804–12.

    Article  CAS  PubMed  Google Scholar 

  23. Liu ZG, Jiao YP, Liu FN, Zhang ZY. Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. J Biomed Mater Res Part A. 2007;83:806–12.

    Article  Google Scholar 

  24. de la Fuente M, Seijo B, Alonso M. Bioadhesive hyaluronan–chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther. 2008;15:668–76.

    Article  PubMed  Google Scholar 

  25. Zhang L, Jin Y, Liu H, Du Y. Structure and control release of chitosan/carboxymethyl cellulose microcapsules. J Appl Polym Sci. 2001;82:584–92.

    Article  CAS  Google Scholar 

  26. Wu D, Delair T. Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydr Polym. 2015;119:149–58.

    Article  CAS  PubMed  Google Scholar 

  27. Iijima K, Tsuji Y, Kuriki I, Kakimoto A, Nikaido Y, Ninomiya R, et al. Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Colloids Surf B. 2017;160:228–37.

    Article  CAS  Google Scholar 

  28. Yamazaki M, Iijima K. Fabrication and characterization of polysaccharide composite films from polyion complex particles. Polymers 2020;12:435.

    Article  CAS  PubMed Central  Google Scholar 

  29. Hansson AD, Francesco T, Falson F, Rousselle P, Jordan O, Borchard G. Preparation and evaluation of nanoparticles for directed tissue engineering. Int J Pharm. 2012;439:73–80.

    Article  CAS  PubMed  Google Scholar 

  30. Oosawa F. Polyeletrolytes. New York: M. Dekker; 1971.

  31. Drogoz A, David L, Rochas C, Domard A, Delair T. Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring. Langmuir. 2007;23:10950–58.

    Article  CAS  PubMed  Google Scholar 

  32. Kulkarni AD, Vanjari YH, Sancheti KH, Patel HM, Belgamwar VS, Surana SJ, et al. Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications. Artif Cells Nanomed Biotechnol. 2016;44:1615–25.

    Article  CAS  PubMed  Google Scholar 

  33. Delair T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm. 2011;78:10–8.

    Article  CAS  PubMed  Google Scholar 

  34. Shinoda K, Nakajima A. Complex formation of heparin or sulfated cellulose with glycol chitosan. Bull Inst Chem Res Kyoto Univ. 1975;53:392–9.

    CAS  Google Scholar 

  35. Shinoda K, Nakajima A. Complex formation of hyaluronic acid or chondroitin sulfate with glycol chitosan. Bull Inst Chem Res Kyoto Univ. 1975;53:400–8.

    CAS  Google Scholar 

  36. Adcock SA, McCammon JA. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev. 2006;106:1589–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shen JW, Li J, Zhao Z, Zhang L, Peng G, Liang L. Molecular dynamics study on the mechanism of polynucleotide encapsulation by chitosan. Sci Rep. 2017;7:5050.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhao J, Xing T, Li Q, Chen Y, Yao WS, Jin SH, et al. Preparation of chitosan and carboxymethylcellulose-based polyelectrolyte complex hydrogel via SD-A-SGT method and its adsorption of anionic and cationic dye. J Appl Polym Sci. 2020;137:e48980.

    Article  Google Scholar 

  39. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, et al. GLYCAM06: a generalizable biomolecular force field. Carbohydr J Comput Chem. 2008;29:622–55.

    Article  CAS  Google Scholar 

  40. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mulloy B, Forster MJ, Jones C, Davies D. N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem J. 1993;293:849–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kowsaka K, Okajima K, Kamide K. Further study on the distribution of substituent group in cellulose acetate by 13C{1H}NMR analysis: assignment of carbonyl carbon oeaks. Polym J. 1986;18:843–49.

    Article  CAS  Google Scholar 

  43. Bernardi A, Faller R, Reith D, Kirschner KN. ACPYPE update for nonuniform 1–4 scale factors: conversion of the GLYCAM06 force field from AMBER to GROMACS. SoftwareX. 2019;10:100241.

    Article  Google Scholar 

  44. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

    Article  Google Scholar 

  45. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

    Article  CAS  Google Scholar 

  46. Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2013;3:198–210.

    Article  CAS  Google Scholar 

  47. Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–72.

    Article  CAS  Google Scholar 

  48. Darden T, York D, Pedersen L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.

    Article  CAS  Google Scholar 

  49. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:14101.

    Article  Google Scholar 

  50. Parrinello M, Rahman A. Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett. 1980;45:1196.

    Article  CAS  Google Scholar 

  51. Fletcher R, Powell MA. A rapidly convergent descent method for minimization. J Comput. 1963;6:163–68.

    Article  Google Scholar 

  52. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.

  53. Michaels AS. Polyelectrolyte complexes, Ind Eng Chem. 1965;57:32–40.

  54. Popat K. Nanotechnology in tissue engineering and regenerative medicine. 1st ed. Boca Raton: CRC Press; 2010.

  55. Franca EF, Freitas LC, Lins RD. Chitosan molecular structure as a function of N-acetylation. Biopolymers 2011;95:448–60.

    Article  CAS  PubMed  Google Scholar 

  56. Borca CH, Arango CA. Molecular dynamics of a water-absorbent nanoscale material based on chitosan. J Phys Chem B. 2016;120:3754–64.

    Article  CAS  PubMed  Google Scholar 

  57. Nagarajan B, Sankaranarayanan NV, Desai UR. Perspective on computational simulations of glycosaminoglycans. Wires Comput Mol Sci. 2019;9:e1388.

    Article  Google Scholar 

  58. Chen WB, Wang LF, Chen JS, Fan SY. Characterization of polyelectrolyte complexes between chondroitin sulfate and chitosan in the solid state. J Biomed Mater Res A. 2005;75:128–37.

    Article  PubMed  Google Scholar 

  59. Hashizume M, Ohashi M, Kobayashi H, Tsuji Y, Iijima K. Free-standing polysaccharide composite films: Improved preparation and physical properties. Colloids Surf A. 2015;48:18–24.

    Article  Google Scholar 

  60. Florczyk SJ, Wang K, Jana S, Wood DL, Sytsma SK, Sham J, et al. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials. 2013;34:10143–50.

    Article  CAS  PubMed  Google Scholar 

  61. Lamarque G, Lucas JM, Viton C, Domard A. Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution: role of various structural parameters. Biomacromolecules. 2005;6:131–42.

    Article  CAS  PubMed  Google Scholar 

  62. Montembault A, Viton C, Domard A. Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules. 2005;6:653–62.

    Article  CAS  PubMed  Google Scholar 

  63. Schatz C, Viton C, Delair T, Pichot C, Domard A. Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules. 2003;4:641–8.

    Article  CAS  PubMed  Google Scholar 

  64. Feng Y, Li J, Wang B, Tian X, Chen K, Zeng J, et al. Novel nanofibrillated cellulose/chitin whisker hybrid nanocomposites and their use for mechanical performance enhancements. Bioresources. 2018;13:3030–44.

    Article  CAS  Google Scholar 

  65. Park JJ, Luo X, Yi H, Valentine TM, Payne GF, Bentley WE, et al. Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. Lab Chip. 2006;6:1315–21.

    Article  CAS  PubMed  Google Scholar 

  66. Hashizume M, Murata Y, Iijima K, Shibata T. Drug loading and release behaviors of freestanding polysaccharide composite films. Polym J. 2016;48:545–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Leave a Nest grant IKEDA SCIENTIFIC award.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M. Yamazaki and K. Iijima; methodology: M. Yamazaki, M. Yabe, and K. Iijima; investigation: M. Yamazaki and M. Yabe; writing—original draft preparation: M. Yamazaki; writing—review and editing: M. Yabe and K. Iijima; supervision and project administration: K. Iijima.

Corresponding author

Correspondence to Kazutoshi Iijima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, M., Yabe, M. & Iijima, K. Analysis of the formation mechanism of polyion complexes of polysaccharides by molecular dynamics simulation with oligosaccharides. Polym J 54, 345–354 (2022). https://doi.org/10.1038/s41428-021-00602-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00602-y

This article is cited by

Search

Quick links