Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Delivery of therapeutic oligonucleotides targeting Dectin-1 using quantized complexes

Abstract

Finding an appropriate carrier for antisense oligonucleotides (AS-ODNs) and improving the efficiency of their delivery to cells and organs has been critical for the translation of antisense therapy into practice for more than 30 years. We have used a β-glucan, schizophyllan (SPG), as a delivery tool to solve this issue. SPG forms a complex with AS-ODNs that can be taken up by cells expressing the β-glucan receptor Dectin-1. We used SPG/AS-DNA complexes containing four to ten ODNs with a relatively large distribution of molecular weights. We recently discovered a complex in which the number of AS-ODNs can be accurately controlled and denoted it as a quantized complex. Building on our previous work, this paper presents the biological properties of this new quantized complex, including its efficacy for cells expressing Dectin-1 and the mechanism behind its cellular uptake of gene-silenced AS-ODNs and immunostimulatory CpG-ODNs. We found that this new complex is also recognized by Dectin-1, and interestingly, is more effective than the conventional complexes, owing to its easier escape from the endocytotic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hagedorn PH, Hansen BR, Koch T, Lindow M. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res. 2017;45:2262–82.

    Article  CAS  Google Scholar 

  2. Khar RK, Jain GK, Warsi MH, Mallick N, Akhter S, Pathan SA, et al. Nano-vectors for the ocular delivery of nucleic acid-based therapeutics. Indian J Pharm Sci. 2010;72:675–88.

    Article  CAS  Google Scholar 

  3. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA. 1978;75:280–4.

    Article  CAS  Google Scholar 

  4. Zhu L, Mahato RI. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv. 2010;7:1209–26.

    Article  CAS  Google Scholar 

  5. Kim Y-T, Kim E-H, Cheong C, Williams DL, Kim C-W, Lim S-T. Structural characterization of β-d-(1→3, 1→6)-linked glucans using NMR spectroscopy. Carbohydr Res. 2000;328:331–41.

    Article  CAS  Google Scholar 

  6. McIntire T, Brant D. Observations of the (R’3)-²-d-glucan linear triple helix to macrocycle interconversion using noncontact atomic force microscopy. J Am Chem Soc. 1998;120:6909–19.

    Article  CAS  Google Scholar 

  7. Sakurai K, Shinkai S. Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide:  schizophyllan. J Am Chem Soc. 2000;122:4520–1.

    Article  CAS  Google Scholar 

  8. Mizu M, Koumoto K, Anada T, Karinaga R, Kimura T, Nagasaki T, et al. Enhancement of the antisense effect of polysaccharide–polynucleotide complexes by preventing the antisense oligonucleotide from binding to proteins in the culture medium. Bull Chem Soc Jpn. 2004;77:1101–10.

    Article  CAS  Google Scholar 

  9. Heyl KA, Klassert TE, Heinrich A, Müller MM, Klaile E, Dienemann H, et al. Dectin-1 is expressed in human lung and mediates the proinflammatory immune response to nontypeable haemophilus influenzae. mBio. 2014;5:e01492–14.

    Article  CAS  Google Scholar 

  10. Mochizuki S, Sakurai K. Dectin-1 targeting delivery of TNF-α antisense ODNs complexed with β-1,3-glucan protects mice from LPS-induced hepatitis. J Control Release. 2011;151:155–61.

    Article  CAS  Google Scholar 

  11. Brown GD, Gordon S. A new receptor for β-glucans. Nature. 2001;413:36–7.

    Article  CAS  Google Scholar 

  12. Izumi H, Nagao S, Mochizuki S, Fujiwara N, Sakurai K, Morimoto Y. Optimal sequence of antisense DNA to silence YB-1 in lung cancer by use of a novel polysaccharide drug delivery system. Int J Oncol. 2016;48:2472–8.

    Article  CAS  Google Scholar 

  13. Fujiwara N, Izumi H, Morimoto Y, Sakurai K, Mochizuki S. Complex consisting of antisense DNA and β-glucan promotes internalization into cell through Dectin-1 and hybridizes with target mRNA in cytosol. Cancer Gene Ther. 2019;26:32–40.

    Article  CAS  Google Scholar 

  14. Sasaki S, Izumi H, Morimoto Y, Sakurai K, Mochizuki S. Induction of potent cell growth inhibition by schizophyllan/K-ras antisense complex in combination with gemcitabine. Bioorg Med Chem. 2020;28:115668.

    Article  CAS  Google Scholar 

  15. Shimada N, Coban C, Takeda Y, Mizu M, Minari J, Anada T, et al. A polysaccharide carrier to effectively deliver native phosphodiester CpG DNA to antigen-presenting cells. Bioconjugate Chem. 2007;18:1280–6.

    Article  CAS  Google Scholar 

  16. Shimada N, Ishii KJ, Takeda Y, Coban C, Torii Y, Shinkai S, et al. Synthesis and in vitro characterization of antigen-conjugated polysaccharide as a CpG DNA carrier. Bioconjugate Chem. 2006;17:1136–40.

    Article  CAS  Google Scholar 

  17. Kobiyama K, Aoshi T, Narita H, Kuroda E, Hayashi M, Tetsutani K, et al. Nonagonistic Dectin-1 ligand transforms CpG into a multitask nanoparticulate TLR9 agonist. Proc Natl Acad Sci USA. 2014;111:3086–91.

    Article  CAS  Google Scholar 

  18. Mochizuki S, Morishita H, Sakurai K. Macrophage specific delivery of TNF-α siRNA complexed with β-1,3-glucan inhibits LPS-induced cytokine production in a murine acute hepatitis model. Bioorg Med Chem. 2013;21:2535–42.

    Article  CAS  Google Scholar 

  19. Miyamoto N, Mochizuki S, Fujii S, Yoshida K, Sakurai K. Adjuvant activity enhanced by cross-linked CpG-oligonucleotides in β-glucan nanogel and its antitumor effect. Bioconjug Chem. 2017;28:565–73.

    Article  CAS  Google Scholar 

  20. Sakisaka H, Takedatsu H, Mitsuyama K, Mochizuki S, Sakurai K, Sakisaka S, et al. Topical therapy with antisense tumor necrosis factor alpha using novel β-glucan-based drug delivery system ameliorates intestinal inflammation. Int J Mol Sci. 2020;21:683.

    Article  CAS  Google Scholar 

  21. Zhang Q, Ichimaru N, Higuchi S, Cai S, Hou J, Fujino M, et al. Permanent acceptance of mouse cardiac allografts with CD40 siRNA to induce regulatory myeloid cells by use of a novel polysaccharide siRNA delivery system. Gene Ther. 2015;22:217–26.

    Article  CAS  Google Scholar 

  22. Sumiya K, Matsunaga T, Tanaka M, Mochizuki S, Sakurai K. Oligo-DNA stoichiometrically binds β-1,3-glucan with the best fit length. Biomacromolecules. 2020;21:4823–34.

    Article  CAS  Google Scholar 

  23. Sumiya K, Izumi H, Mochizuki S, Sakurai K. Enhanced in-vitro efficacy of antisense delivery by use of low-molecular weight polysaccharide/DNA complex. Chem Lett. 2021;50:1191–3.

    Article  CAS  Google Scholar 

  24. Sanada Y, Matsuzaki T, Mochizuki S, Okobira T, Uezu K, Sakurai K. β-1,3-D-glucan schizophyllan/poly(dA) triple-helical complex in dilute solution. J Phys Chem B. 2012;116:87–94.

    Article  CAS  Google Scholar 

  25. Basaki Y, Taguchi K-i, Izumi H, Murakami Y, Kubo T, Hosoi F, et al. Y-box binding protein-1 (YB-1) promotes cell cycle progression through CDC6-dependent pathway in human cancer cells. Eur J Cancer. 2010;46:954–65.

    Article  CAS  Google Scholar 

  26. Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M. The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays. 2003;25:691–8.

    Article  CAS  Google Scholar 

  27. Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi T, Iwamoto Y, et al. The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther. 2004;3:1485–92.

    CAS  PubMed  Google Scholar 

  28. Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61:195–204.

    Article  CAS  Google Scholar 

  29. Krug A, Rothenfusser S, Hornung V, Jahrsdörfer B, Blackwell S, Ballas ZK, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol. 2001;31:2154–63.

    Article  CAS  Google Scholar 

  30. Verthelyi D, Ishii KJ, Gursel M, Takeshita F, Klinman DM. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol. 2001;166:2372–7.

    Article  CAS  Google Scholar 

  31. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  Google Scholar 

  32. Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000;164:944–53.

    Article  CAS  Google Scholar 

  33. Stenmark H, Aasland R, Toh BH, D’Arrigo A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem. 1996;271:24048–54.

    Article  CAS  Google Scholar 

  34. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–54.

    Article  CAS  Google Scholar 

  35. Raja RH, McGary CT, Weigel PH. Affinity and distribution of surface and intracellular hyaluronic acid receptors in isolated rat liver endothelial cells. J Biol Chem. 1988;263:16661–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Mr. Shogo Sasaki for technical assistance. This work was financially supported by JST CREST and by JSPS KAKENHI: Grant-in-Aid for Scientific Research A (20H00668) and Grant-in-Aid for Challenging Exploratory Research (20K20449).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroto Izumi or Kazuo Sakurai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumiya, K., Izumi, H., Matsunaga, T. et al. Delivery of therapeutic oligonucleotides targeting Dectin-1 using quantized complexes. Polym J 54, 591–601 (2022). https://doi.org/10.1038/s41428-021-00595-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00595-8

This article is cited by

Search

Quick links