Abstract
We estimated the configurational heat capacity for 21 types of polymers above the glass transition temperature (Tg) using molecular vibration analysis. The polymers for which the configurational heat capacity was determined are listed as follows: six types of linear polymers with a carbon backbone: poly(1-butene) (PBE), poly(methyl acrylate) (PMA), poly(1-hexene) (PHE), polyisoprene (PIP), poly(vinyl fluoride) (PVF), polypropylene (PP), eight types of polyesters: poly(glycolide) (PGL), poly(propiolactone) (PPL), poly(butyrolactone) (PBL), poly(valerolactone) (PVL), polycaprolactone (PCL), polyundecanolactone (PUDL), polytridecanolactone (PTDL) and polypentadecanolactone (PPDL), and seven types of poly(oxide): poly(oxytrimethylene) (PO3M), poly(oxytetramethylene) (PO4M), poly(oxypropylene) (POP), poly(oxymethylene-oxytetramethylene) (POMOM), poly(oxymethylene-oxyethylene) (POMOE), poly(oxyethylene) (POE), and PO4M), poly(oxy(2,6-dimethyl-1,4-phenylene)) (PODMP). As the temperature increases, the configurational heat capacity of all polymers decreases. Based on Landau’s theory, the obtained heat capacity can be well reproduced by using power and logarithmic functions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Dat. 1982;11:1–392.
Gopal ESR. Specific heats at low temperatures. London:Springer; 2012.
Wunderlich B. Thermal analysis of polymeric materials. Heidelberg:Springer;2005.
Glassy, amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties. In: Šesták J, Mareš JJ, Hubík P, editors. Hot topics in thermal analysis and calorimetry. vol. 8. Springer Science & Business Media; 2010.
Gibson GE, Giauque WF. The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of a glass exceeds that of a crystal at the absolute zero. J Am Chem Soc. 1923;45:93–104.
Haida O, Matsuo T, Suga H, Seki S. Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice. J Chem Thermodyn. 1974;6:815–25.
Tajima Y, Matsuo T, Suga H. Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides. J Phys Chem Solids. 1984;45:1135–44.
Einstein A. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann der Phys. 1907;327:180–90.
Debye P. Zur Theorie der spezifischen Wärmen. Ann der Phys. 1912;344:789–839.
Wunderlich B. Motion in polyethylene. II. Vibrations in crystalline polyethylene. J Chem Phys. 1962;37:1207–16.
Pyda M, Bartkowiak M, Wunderlich B. Computation of heat capacities of solids using a general Tarasov equation. J Therm Anal. 1998;52:631–56.
Pyda M, Nowak-Pyda E, Mays J, Wunderlich B. Heat capacity of poly (butylene terephthalate). J Polym Sci. 2004;42:4401–11.
Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. II. Heat capacity of poly(oxacyclobutane), –[–(CH2)3O–]– n, between 1.4 and 330°K. Polym J. 1973;5:11–24.
Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. III. Poly(tetrahydrofuran), –[–(CH2)4O–]–n. Polym J. 1973;5:25–32.
Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. IV. Poly(octamethylene oxide), –[–(CH2)8O–]–n. Polym J. 1973;5:33–40.
Yokota M, Nishiyama E, Fujimura J, Tsukushi I. Excess heat capacity for low-molecular-weight amorphous polystyrene below the glass-transition temperature: influence of end groups. Polym J. 2020;52:575–80.
Yokota M, Sugane K, Tsukushi I, Shibata M. Evaluation of the heat capacity of amorphous polymers composed of a carbon backbone below the glass-transition temperature. Polym J. 2020;52:765–74.
Yokota M, Tsukushi I. Heat capacities of polymer solids composed of polyesters and poly(oxide)s, evaluated below the glass-transition temperature. Polym J. 2020;52:1103–11.
Tarasov VV, Yunitskii GA. Theory of heat capacity of chain and layer structures. Russ J Phys Chem. 1965;39:1109–11.
Nernst W, Lindemann FA. Spezifische Wärme und Quantentheorie. Z Elektrochem. 1911;17:817–27.
Yokota M, Tsukushi I. Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature. Polym J. 2020;52:1113–20.
Nishiyama E, Yokota M, Tsukushi I. Estimation of the configurational heat capacity of polyisobutylene, isobutane and 2,2,4-isomethylpentane above the glass transition temperature. Polym J. 2021;53:1031–6.
Nishiyama E, Yokota M, Tsukushi I. Analysis of the configurational heat capacity of polystyrene and its monomer and oligomer above the glass transition temperature. Polym J; 2021. https://doi.org/10.1038/s41428-021-00554-3.
Dainton FS, Evans DM, Hoare FE, Melia TP. Thermodynamic functions of linear high polymers: part I—polyoxymethylene. Polymer. 1962;3:263–321.
Rabinovich IB, Lebedev BV. Thermodynamics of vinyl monomers and polymers. V. Measurement of heat capacity and a calculation of the thermodynamic functions of poly (methyl acrylate), poly-(methyl methacrylate), poly (methacrylamide), poly (α-methylstyrene) and poly (vinyl alcohol). Tr Khim Tekhnol. 1967;2:36.
Bourdariat J, Berton A, Chaussy J, Isnard R, Odin J. Influence of cooling rate on the heat capacity and thermal transitions of amorphous polyhexene-1. Polymer. 1973;14:167–70.
Chang SS, Bestul AB. Heat capacities of cis-1, 4-Polyisoprene from 2 to 360 K. J Res Natl Bur Stand A Phys Chem. 1971;75A:113–20.
Lee WK, Choy CL. Heat capacity of fluoropolymers. J Polym Sci. 1975;13:619–35.
Lebedev BV, Evstropov AA, Kiparisova EG, Belov VI. Thermodynamics of glycolide, polyglycolide and glycolide polymerization process in temperature-range 0–550 °K. Vysokomol Soedin A. 1978;20:29–37.
Lebedev B, Yevstropov A. Thermodynamic properties of polylactones. Makromol Chem. 1984;185:1235–53.
Beaumont RH, Clegg B, Gee G, Herbert JBM, Marks DJ, Roberts RC, et al. Heat capacities of propylene oxide and of some polymers of ethylene and propylene oxides. Polymer. 1966;7:401–17.
Glegg GA, Gee DR, Melia TP. Thermal properties of an ethylene/1‐butene block copolymer. Macro Chem Phys. 1970;132:203–07.
Clegg GA, Melia TP. Thermodynamics of polymerization of heterocyclic compounds part V. The heat capacity, entropy, enthalpy and free energy of 1,3-dioxolan and poly-1,3-dioxolan. Polymer. 1969;10:912–22.
Karasz FE, Bair HE, O’reilly JM. Thermodynamic properties of poly (2,6-dimethyl-1,4-phenylene ether). J Polym Sci Part A-2: Polym Phys. 1968;6:1141–8.
Kadanoff LP, Götze W, Hamblen D, Hecht R, Lewis EAS, Palciaus VV, et al. Static phenomena near critical point: theory and experiment. Rev Mod Phys. 1967;39:395–431.
Yamamuro O, Tsukushi I, Lindqvist A, Takahara S, Ishikawa M, Matsuo T. Calorimetric study of glassy and liquid toluene and ethylbenzene: thermodynamic approach to spatial heterogeneity in glass-forming molecular liquids. J Phys Chem B. 1998;102:1605–09.
Tatsumi S, Aso S, Yamamuro O. Thermodynamic study of simple molecular glasses: universal features in their heat capacity and the size of the cooperatively rearranging regions. Phys Rev Lett. 2012;109:045701.
Acknowledgements
The authors thank Enago (www.enago.jp) for the English language review.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nishiyama, E., Yokota, M. & Tsukushi, I. Configurational heat capacity of various polymers above the glass transition temperature. Polym J 54, 259–267 (2022). https://doi.org/10.1038/s41428-021-00582-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41428-021-00582-z