Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Configurational heat capacity of various polymers above the glass transition temperature

Abstract

We estimated the configurational heat capacity for 21 types of polymers above the glass transition temperature (Tg) using molecular vibration analysis. The polymers for which the configurational heat capacity was determined are listed as follows: six types of linear polymers with a carbon backbone: poly(1-butene) (PBE), poly(methyl acrylate) (PMA), poly(1-hexene) (PHE), polyisoprene (PIP), poly(vinyl fluoride) (PVF), polypropylene (PP), eight types of polyesters: poly(glycolide) (PGL), poly(propiolactone) (PPL), poly(butyrolactone) (PBL), poly(valerolactone) (PVL), polycaprolactone (PCL), polyundecanolactone (PUDL), polytridecanolactone (PTDL) and polypentadecanolactone (PPDL), and seven types of poly(oxide): poly(oxytrimethylene) (PO3M), poly(oxytetramethylene) (PO4M), poly(oxypropylene) (POP), poly(oxymethylene-oxytetramethylene) (POMOM), poly(oxymethylene-oxyethylene) (POMOE), poly(oxyethylene) (POE), and PO4M), poly(oxy(2,6-dimethyl-1,4-phenylene)) (PODMP). As the temperature increases, the configurational heat capacity of all polymers decreases. Based on Landau’s theory, the obtained heat capacity can be well reproduced by using power and logarithmic functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Dat. 1982;11:1–392.

    Google Scholar 

  2. Gopal ESR. Specific heats at low temperatures. London:Springer; 2012.

  3. Wunderlich B. Thermal analysis of polymeric materials. Heidelberg:Springer;2005.

  4. Glassy, amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties. In: Šesták J, Mareš JJ, Hubík P, editors. Hot topics in thermal analysis and calorimetry. vol. 8. Springer Science & Business Media; 2010.

  5. Gibson GE, Giauque WF. The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of a glass exceeds that of a crystal at the absolute zero. J Am Chem Soc. 1923;45:93–104.

    Article  CAS  Google Scholar 

  6. Haida O, Matsuo T, Suga H, Seki S. Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice. J Chem Thermodyn. 1974;6:815–25.

    Article  CAS  Google Scholar 

  7. Tajima Y, Matsuo T, Suga H. Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides. J Phys Chem Solids. 1984;45:1135–44.

    Article  CAS  Google Scholar 

  8. Einstein A. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann der Phys. 1907;327:180–90.

    Article  Google Scholar 

  9. Debye P. Zur Theorie der spezifischen Wärmen. Ann der Phys. 1912;344:789–839.

    Article  Google Scholar 

  10. Wunderlich B. Motion in polyethylene. II. Vibrations in crystalline polyethylene. J Chem Phys. 1962;37:1207–16.

    Article  CAS  Google Scholar 

  11. Pyda M, Bartkowiak M, Wunderlich B. Computation of heat capacities of solids using a general Tarasov equation. J Therm Anal. 1998;52:631–56.

    Article  CAS  Google Scholar 

  12. Pyda M, Nowak-Pyda E, Mays J, Wunderlich B. Heat capacity of poly (butylene terephthalate). J Polym Sci. 2004;42:4401–11.

    Article  CAS  Google Scholar 

  13. Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. II. Heat capacity of poly(oxacyclobutane), –[–(CH2)3O–]– n, between 1.4 and 330°K. Polym J. 1973;5:11–24.

    Article  CAS  Google Scholar 

  14. Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. III. Poly(tetrahydrofuran), –[–(CH2)4O–]–n. Polym J. 1973;5:25–32.

    Article  CAS  Google Scholar 

  15. Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. IV. Poly(octamethylene oxide), –[–(CH2)8O–]–n. Polym J. 1973;5:33–40.

    Article  CAS  Google Scholar 

  16. Yokota M, Nishiyama E, Fujimura J, Tsukushi I. Excess heat capacity for low-molecular-weight amorphous polystyrene below the glass-transition temperature: influence of end groups. Polym J. 2020;52:575–80.

    Article  CAS  Google Scholar 

  17. Yokota M, Sugane K, Tsukushi I, Shibata M. Evaluation of the heat capacity of amorphous polymers composed of a carbon backbone below the glass-transition temperature. Polym J. 2020;52:765–74.

    Article  CAS  Google Scholar 

  18. Yokota M, Tsukushi I. Heat capacities of polymer solids composed of polyesters and poly(oxide)s, evaluated below the glass-transition temperature. Polym J. 2020;52:1103–11.

    Article  CAS  Google Scholar 

  19. Tarasov VV, Yunitskii GA. Theory of heat capacity of chain and layer structures. Russ J Phys Chem. 1965;39:1109–11.

    Google Scholar 

  20. Nernst W, Lindemann FA. Spezifische Wärme und Quantentheorie. Z Elektrochem. 1911;17:817–27.

    CAS  Google Scholar 

  21. Yokota M, Tsukushi I. Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature. Polym J. 2020;52:1113–20.

    Article  CAS  Google Scholar 

  22. Nishiyama E, Yokota M, Tsukushi I. Estimation of the configurational heat capacity of polyisobutylene, isobutane and 2,2,4-isomethylpentane above the glass transition temperature. Polym J. 2021;53:1031–6.

    Article  CAS  Google Scholar 

  23. Nishiyama E, Yokota M, Tsukushi I. Analysis of the configurational heat capacity of polystyrene and its monomer and oligomer above the glass transition temperature. Polym J; 2021. https://doi.org/10.1038/s41428-021-00554-3.

  24. Dainton FS, Evans DM, Hoare FE, Melia TP. Thermodynamic functions of linear high polymers: part I—polyoxymethylene. Polymer. 1962;3:263–321.

    Article  CAS  Google Scholar 

  25. Rabinovich IB, Lebedev BV. Thermodynamics of vinyl monomers and polymers. V. Measurement of heat capacity and a calculation of the thermodynamic functions of poly (methyl acrylate), poly-(methyl methacrylate), poly (methacrylamide), poly (α-methylstyrene) and poly (vinyl alcohol). Tr Khim Tekhnol. 1967;2:36.

    Google Scholar 

  26. Bourdariat J, Berton A, Chaussy J, Isnard R, Odin J. Influence of cooling rate on the heat capacity and thermal transitions of amorphous polyhexene-1. Polymer. 1973;14:167–70.

    Article  CAS  Google Scholar 

  27. Chang SS, Bestul AB. Heat capacities of cis-1, 4-Polyisoprene from 2 to 360 K. J Res Natl Bur Stand A Phys Chem. 1971;75A:113–20.

    Article  CAS  Google Scholar 

  28. Lee WK, Choy CL. Heat capacity of fluoropolymers. J Polym Sci. 1975;13:619–35.

    CAS  Google Scholar 

  29. Lebedev BV, Evstropov AA, Kiparisova EG, Belov VI. Thermodynamics of glycolide, polyglycolide and glycolide polymerization process in temperature-range 0–550 °K. Vysokomol Soedin A. 1978;20:29–37.

    CAS  Google Scholar 

  30. Lebedev B, Yevstropov A. Thermodynamic properties of polylactones. Makromol Chem. 1984;185:1235–53.

    Article  CAS  Google Scholar 

  31. Beaumont RH, Clegg B, Gee G, Herbert JBM, Marks DJ, Roberts RC, et al. Heat capacities of propylene oxide and of some polymers of ethylene and propylene oxides. Polymer. 1966;7:401–17.

    Article  CAS  Google Scholar 

  32. Glegg GA, Gee DR, Melia TP. Thermal properties of an ethylene/1‐butene block copolymer. Macro Chem Phys. 1970;132:203–07.

    Article  Google Scholar 

  33. Clegg GA, Melia TP. Thermodynamics of polymerization of heterocyclic compounds part V. The heat capacity, entropy, enthalpy and free energy of 1,3-dioxolan and poly-1,3-dioxolan. Polymer. 1969;10:912–22.

    Article  CAS  Google Scholar 

  34. Karasz FE, Bair HE, O’reilly JM. Thermodynamic properties of poly (2,6-dimethyl-1,4-phenylene ether). J Polym Sci Part A-2: Polym Phys. 1968;6:1141–8.

    Article  CAS  Google Scholar 

  35. Kadanoff LP, Götze W, Hamblen D, Hecht R, Lewis EAS, Palciaus VV, et al. Static phenomena near critical point: theory and experiment. Rev Mod Phys. 1967;39:395–431.

    Article  CAS  Google Scholar 

  36. Yamamuro O, Tsukushi I, Lindqvist A, Takahara S, Ishikawa M, Matsuo T. Calorimetric study of glassy and liquid toluene and ethylbenzene: thermodynamic approach to spatial heterogeneity in glass-forming molecular liquids. J Phys Chem B. 1998;102:1605–09.

    Article  CAS  Google Scholar 

  37. Tatsumi S, Aso S, Yamamuro O. Thermodynamic study of simple molecular glasses: universal features in their heat capacity and the size of the cooperatively rearranging regions. Phys Rev Lett. 2012;109:045701.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Tsukushi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, E., Yokota, M. & Tsukushi, I. Configurational heat capacity of various polymers above the glass transition temperature. Polym J 54, 259–267 (2022). https://doi.org/10.1038/s41428-021-00582-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00582-z

Search

Quick links