Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photocleavage behavior of a polythiophene derivative containing a coumarin unit

Abstract

We synthesized a polythiophene derivative containing a photocleavable coumarin unit in the side chain. The resulting polymer contained 56% coumarin units with a number-average molecular weight of 17,000. When a film of the polythiophene derivative was irradiated at 313 nm, 54% of the coumarin groups were photocleaved. Fourier transform infrared spectroscopy revealed that the photocleaved side chains were transformed to carboxyl groups. Formation of the carboxyl group changed the nature of the surface of the polymer film from hydrophobic to hydrophilic. Furthermore, photocleavage of the coumarin unit changed the solubility of the polymer in organic solvents. Taking advantage of this solubility change, we photopatterned the polythiophene film using a photomask. In addition, the photocleaved polythiophene film showed a 104-fold increase in electrical conductivity after chemical doping.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chem Rev. 2016;116:13279–412.

    Article  CAS  Google Scholar 

  2. Kaloni TP, Giesbrecht PK, Schreckenbach G, Freund MS. Polythiophene: from fundamental perspectives to applications. Chem Mater. 2017;29:10248–83.

    Article  CAS  Google Scholar 

  3. Aoki H, Saito H, Shimoyama Y, Kuwabara J, Yasuda T, Kanbara T. Synthesis of conjugated polymers containing octafluorobiphenylene unit via Pd-catalyzed cross-dehydrogenative-coupling reaction. ACS Macro Lett. 2018;7:90–94.

    Article  CAS  Google Scholar 

  4. Yang J, Xiao B, Tang A, Li J, Wang X, Zhou E. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv Mater. 2019;31:1804699.

    Article  CAS  Google Scholar 

  5. Lin P-S, Shoji Y, Afraj SN, Ueda M, Lin C-H, Inagaki S, et al. Controlled synthesis of poly[(3-alkylthio)thiophene]s and their application to organic field-effect transistors. ACS Appl Mater Interfaces. 2021;13:31898–909.

    Article  CAS  Google Scholar 

  6. Li G, Chang W-H, Yang Y. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat Rev Mater. 2017;2:17043.

    Article  CAS  Google Scholar 

  7. Wang M, Baek P, Akbarinejad A, Barker D, Travas-Sejdic J. Conjugated polymers and composites for stretchable organic electronics. J Mater Chem C. 2019;7:5534–52.

    Article  CAS  Google Scholar 

  8. Freudenberg J, Jänsch D, Hinkel F, Bunz UHF. Immobilization strategies for organic semiconducting conjugated polymers. Chem Rev. 2018;118:5598–689.

    Article  CAS  Google Scholar 

  9. Yang Y, Liu Z, Zhang G, Zhang X, Zhang D. The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities. Adv Mater. 2019;31:1903104.

    Article  CAS  Google Scholar 

  10. Kim MJ, Lee M, Min H, Kim S, Yang J, Kweon H, et al. Universal three-dimensional crosslinker for all-photopatterned electronics. Nat Commun. 2020;11:1520.

    Article  CAS  Google Scholar 

  11. Sun W, Xie L, Guo X, Su W, Zhang Q. Photocross-linkable hole transport materials for inkjet-printed high-efficient quantum dot light-emitting diodes. ACS Appl Mater Interfaces. 2020;12:58369–77.

    Article  CAS  Google Scholar 

  12. Saito Y, Sakai Y, Higashihara T, Ueda M. Direct patterning of poly(3-hexylthiophene) and its application to organic field-effect transistor. RSC Adv. 2012;2:1285–8.

    Article  CAS  Google Scholar 

  13. He P, Shimano S, Salikolimi K, Isoshima T, Kakefuda Y, Mori T, et al. Noncovalent modification of single-walled carbon nanotubes using thermally cleavable polythiophenes for solution-processed thermoelectric films. ACS Appl Mater Interfaces. 2019;11:4211–8.

    Article  CAS  Google Scholar 

  14. Sun B, Hong W, Aziz H, Li Y. Diketopyrrolopyrrole-based semiconducting polymer bearing thermocleavable side chains. J Mater Chem. 2012;22:18950–5.

    Article  CAS  Google Scholar 

  15. Liu J, Kadnikova EN, Liu Y, McGehee MD, Fréchet JMJ. Polythiophene containing thermally removable solubilizing groups enhances the interface and the erformance of polymer−titania hybrid solar cells. J Am Chem Soc. 2004;126:9486–7.

    Article  CAS  Google Scholar 

  16. Hu X, Lawrence JA, Mullahoo J, Smith ZC, Wilson DJ, Mace CR, et al. Directly photopatternable polythiophene as dual-tone photoresist. Macromolecules. 2017;50:7258–67.

    Article  CAS  Google Scholar 

  17. Hu X, Qureishi Z, Thomas SW. Light-controlled selective disruption, multilevel patterning, and sequential release with polyelectrolyte multilayer films incorporating for photocleavable chromophores. Chem Mater. 2017;29:2951–60.

    Article  CAS  Google Scholar 

  18. Smith ZC, Pawle RH, Thomas SW. Photoinduced aggregation of polythiophenes. ACS Macro Lett. 2012;1:825–9.

    Article  CAS  Google Scholar 

  19. Schmatz B, Yuan Z, Lang AW, Hernandez JL, Reichmanis E, Reynolds JR. Aqueous processing for printed organic electronics: conjugated polymers with multistage cleavable side chains. ACS Cent Sci. 2017;3:961–7.

    Article  CAS  Google Scholar 

  20. Schelkle KM, Bender M, Jeltsch K, Buckup T, Müllen K, Hamburger M, et al. Light-induced solubility modulation of polyfluorene to enhance the performance of OLEDs. Angew Chem Int Ed. 2015;54:14545–8.

    Article  CAS  Google Scholar 

  21. Luo J, Uprety R, Naro Y, Chou C, Nguyen DP, Chin JW, et al. Genetically encoded optochemical probes for simultaneous fluorescence reporting and light activation of protein function with two-photon excitation. J Am Chem Soc. 2014;136:15551–8.

    Article  CAS  Google Scholar 

  22. Ando H, Furuta T, Tsien RY, Okamoto H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet. 2001;28:317–25.

    Article  CAS  Google Scholar 

  23. Furuta T, Wang SS-H, Dantzker JL, Dore TM, Bybee WJ, Callaway EM, et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc Natl Acad Sci USA. 1999;96:1193–200.

    Article  CAS  Google Scholar 

  24. Schmidt R, Geissler D, Hagen V, Bendig J. Mechanism of photocleavage of (coumarin-4-yl)methyl esters. J Phys Chem A. 2007;111:5768–74.

    Article  CAS  Google Scholar 

  25. Matthews JR, Goldoni F, Schenning APHJ, Meijer EW. Non-ionic polythiophenes: a non-aggregating folded structure in water. Chem Commun, 5503-5 https://pubs.rsc.org/en/content/articlelanding/2005/cc/b512119a (2005).

  26. Salikolimi K, Kawamoto M, He P, Aigaki T, Ito Y. Polythiophene nanoparticles that display reversible multichromism in aqueous media. Polym J. 2017;49:429–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Support Unit of Bio-Material Analysis, Research Resources Center, RIKEN Brain Science Institute for performing the HRMS measurements. We also thank Prof. Dr. Keisuke Tajima and Dr. Kyohei Nakano of the Emergent Functional Polymers Research Team, RIKEN Center for Emergent Matter Science, for the electrical conductivity measurements. We thank Edanz Group (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshihiro Ito or Masuki Kawamoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muralidhar, J.R., Kodama, K., Hirose, T. et al. Photocleavage behavior of a polythiophene derivative containing a coumarin unit. Polym J 54, 191–198 (2022). https://doi.org/10.1038/s41428-021-00574-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00574-z

Search

Quick links