Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Morphological and chemical stabilities of polypyrrole in aqueous media for 1 year

Subjects

Abstract

The long-term morphological and chemical stabilities of polypyrrole grains in aqueous media (1-year duration) are investigated. Polypyrrole grains doped with chloride ions or heptadecafluorooctane sulfonic acid were extensively characterized using a wide range of analytical techniques. The average sizes of the grains were 13–15 μm and consisted of submicrometer-sized atypical primary particles. The grain size increased in the case of polypyrrole doped with chloride ions, whereas no apparent changes were observed in the case of polypyrrole doped with heptadecafluorooctane sulfonic acid after storage at pH 3 and 10. The size and morphology of the primary particles did not change for each grain system. Appreciable changes in chemical structure and surface chemistry were observed. At pH 10, dedoping occurred easily, and chloride ions and heptadecafluorooctane sulfonic acid were released from the grains in a short time (within one week). On the other hand, the dopants were released slowly at pH 3, which is likely caused by nucleophilic attack by water molecules to the polypyrrole. The release rate of the dopant was slower for polypyrrole doped with heptadecafluorooctane sulfonic acid than for polypyrrole doped with chloride ions. This finding is attributed due to the stronger hydrophobic interaction between polypyrrole and heptadecafluorooctane sulfonic acid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Skotheim, TA; Elsenbaumer, RL; Gardiner, JR, Handbook of Conducting Polymers. 2nd ed.; NetLibrary, Incorporated: Boulder, 1998.

  2. Saunders BR, Fleming RJ, Murray KS. Recent advances in the physical and spectroscopic properties of polypyrrole films, particularly those containing transition-metal complexes as counteranions. Chem Mater. 1995;7:1082–94.

    Article  CAS  Google Scholar 

  3. Angeli A. Sopra il nero del pirrolo. Nota preliminare. Atti Accad Naz Lincei Cl Sci Fis Mat Re. 1915;24:3–6.

    Google Scholar 

  4. Rasmussen SC. Conjugated and conducting organic polymers: the first 150 years. Chempluschem. 2020;85:1412–29.

    Article  CAS  PubMed  Google Scholar 

  5. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32:876–921.

    Article  CAS  Google Scholar 

  6. Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–53.

    Article  CAS  PubMed  Google Scholar 

  7. Ateh DD, Navsaria HA, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface. 2006;3:741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mazzotta E, Picca RA, Malitesta C, Piletsky SA, Piletska EV. Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine. Biosens Bioelectron. 2008;23:1152–6.

    Article  CAS  PubMed  Google Scholar 

  9. Setka M, Drbohlavova J, Hubalek J. Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sens (Basel). 2017;17:562.

    Article  Google Scholar 

  10. Abraham DA, Vasantha VS. Hollow polypyrrole composite synthesis for detection of trace-level toxic herbicide. ACS Omega. 2020;5:21458–67.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yano S, Sato K, Suzuki J, Imai H, Oaki Y. Amorphous 2D materials containing a conjugated-polymer network. Commun Chem. 2019;2:97.

    Article  Google Scholar 

  12. Hara S, Zama T, Takashima W, Kaneto K. Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J. 2004;36:151–61.

    Article  CAS  Google Scholar 

  13. Otero TF, Cortés MT. Artificial muscles with tactile sensitivity. Adv Mater 2003;15:279–82.

    Article  CAS  Google Scholar 

  14. Hara S, Zama T, Takashima W, Kaneto K. Gel-like polypyrrole based artificial muscles with extremely large strain. Polym J. 2004;36:933–6.

    Article  CAS  Google Scholar 

  15. Chen J, Liu J, Thundat T, Zeng H. Polypyrrole-doped conductive supramolecular elastomer with stretchability, rapid self-healing, and adhesive property for flexible electronic sensors. ACS Appl Mater Interfaces. 2019;11:18720–9.

    Article  CAS  PubMed  Google Scholar 

  16. Muramatsu R, Oaki Y, Kuwabara K, Hayashi K, Imai H. Solvent-free synthesis, coating and morphogenesis of conductive polymer materials through spontaneous generation of activated monomers. Chem Commun. 2014;50:11840–3.

    Article  CAS  Google Scholar 

  17. Kuwabara K, Masaki H, Imai H, Oaki Y. Substrate coating by conductive polymers through spontaneous oxidation and polymerization. Nanoscale. 2017;9:7895–7900.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Tang B, Wu J, Li R, Wang P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv Mater. 2015;27:4889–94.

    Article  CAS  PubMed  Google Scholar 

  19. Takeuchi M, Kawashima H, Imai H, Fujii S, Oaki Y. Quantitative detection of near-infrared (NIR) light using organic layered composites. J Mater Chem C. 2019;7:4089–95.

    Article  CAS  Google Scholar 

  20. Ishii K, Sato K, Oaki Y, Imai H. Highly porous polymer dendrites of pyrrole derivatives synthesized through rapid oxidative polymerization. Polym J. 2018;51:11–18.

    Article  Google Scholar 

  21. Fielding LA, Hillier JK, Burchell MJ, Armes SP. Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites. Chem Commun. 2015;51:16886–99.

    Article  CAS  Google Scholar 

  22. Fujii S, Armes SP, Jeans R, Devonshire R, Warren S, McArthur SL, et al. Synthesis and characterization of polypyrrole-coated sulfur-rich latex particles: new synthetic mimics for sulfur-based micrometeorites. Chem Mater. 2006;18:2758–65.

    Article  CAS  Google Scholar 

  23. Fujii S, Aichi A, Akamatsu K, Nawafune H, Nakamura Y. One-step synthesis of polypyrrole-coated silver nanocomposite particles and their application as a coloured particulate emulsifier. J Mater Chem. 2007;17:3777–9.

    Article  CAS  Google Scholar 

  24. Kawashima H, Mayama H, Nakamura Y, Fujii S. Hydrophobic polypyrroles synthesized by aqueous chemical oxidative polymerization and their use as light-responsive liquid marble stabilizers. Polym Chem. 2017;8:2609–18.

    Article  CAS  Google Scholar 

  25. Kawashima H, Paven M, Mayama H, Butt HJ, Nakamura Y, Fujii S. Transfer of materials from water to solid surfaces using liquid marbles. ACS Appl Mater Interfaces. 2017;9:33351–9.

    Article  CAS  PubMed  Google Scholar 

  26. Paven M, Mayama H, Sekido T, Butt H-J, Nakamura Y, Fujii S. Light-driven delivery and release of materials using liquid marbles. Adv Funct Mater. 2016;26:3199–206.

    Article  CAS  Google Scholar 

  27. Šišáková M, Asaumi Y, Uda M, Seike M, Oyama K, Higashimoto S, et al. Dodecyl sulfate-doped polypyrrole derivative grains as a light-responsive liquid marble stabilizer. Polym J. 2020;52:589–99.

    Article  Google Scholar 

  28. Osumi T, Seike M, Oyama K, Higashimoto S, Hirai T, Nakamura Y, et al. Synthesis of dioctyl sulfosuccinate‐doped polypyrrole grains by aqueous chemical oxidative polymerization and their use as light‐responsive liquid marble stabilizer. J Appl Polym Sci. 2021;138:51009.

    Article  CAS  Google Scholar 

  29. Fujii S. Stimulus-responsive soft dispersed systems developed based on functional polymer particles: bubbles and liquid marbles. Polym J. 2019;51:1081–101.

    Article  CAS  Google Scholar 

  30. Thiéblemont JC, Planche MF, Petrescu C, Bouvier JM, Bidan G. Stability of chemically synthesized polypyrrole films. Synth Met. 1993;59:81–96.

    Article  Google Scholar 

  31. Tabačiarová J, Mičušík M, Fedorko P, Omastová M. Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym Degrad Stab. 2015;120:392–401.

    Article  Google Scholar 

  32. Ricks-Laskoski HL, Buckley LJ. Twenty-year aging study of electrically conductive polypyrrole films. Synth Met. 2006;156:417–9.

    Article  CAS  Google Scholar 

  33. Münstedt H. Ageing of electrically conducting organic materials. Polymer. 1988;29:296–302.

    Article  Google Scholar 

  34. Samuelson LA, Druy MA. Kinetics of the degradation of electrical conductivity in polypyrrole. Macromolecules. 1986;19:824–8.

    Article  CAS  Google Scholar 

  35. Erlandsson R, Inganäs O, Lundström I, Salaneck WR. XPS and electrical characterization of BF4−-doped polypyrrole exposed to oxygen and water. Synth Met. 1985;10:303–18.

    Article  CAS  Google Scholar 

  36. Okuno H, Kitano T, Yakabe H, Kishimoto M, Siigi H, Nagaoka T. Characterization of overoxidized polypyrrole colloids imprinted with l-lactate and their application to enantioseparation of amino acids. Anal Chem. 2002;74:4184–90.

    Article  CAS  PubMed  Google Scholar 

  37. Maruthapandi M, Nagvenkar AP, Perelshtein I, Gedanken A. Carbon-dot initiated synthesis of polypyrrole and polypyrrole@cuo micro/nanoparticles with enhanced antibacterial activity. ACS Appl Polym Mater. 2019;1:1181–6.

    Article  CAS  Google Scholar 

  38. Fujii S, Matsuzawa S, Nakamura Y, Ohtaka A, Teratani T, Akamatsu K, et al. Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media. Langmuir. 2010;26:6230–9.

    Article  CAS  PubMed  Google Scholar 

  39. Fujii S, Matsuzawa S, Hamasaki H, Nakamura Y, Bouleghlimat A, Buurma NJ. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst. Langmuir. 2012;28:2436–47.

    Article  CAS  PubMed  Google Scholar 

  40. Bouleghlimat A, Othman M, Lagrave L, Matsuzawa S, Nakamura Y, Fujii S, et al. Halide-enhanced catalytic activity of palladium nanoparticles comes at the expense of catalyst recovery. Catalysts. 2017;7:280.

    Article  Google Scholar 

  41. Ramanavičius A, Ramanavičienė A, Malinauskas A. Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta. 2006;51:6025–37.

    Article  Google Scholar 

  42. Chen J, Yu M, Wang C, Feng J, Yan W. Insight into the synergistic effect on selective adsorption for heavy metal ions by a polypyrrole/TiO2 composite. Langmuir. 2018;34:10187–96.

    Article  CAS  PubMed  Google Scholar 

  43. Muhammad Ekramul Mahmud HN, Huq AKO, Yahya RB. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 2016;6:14778–91.

    Article  CAS  Google Scholar 

  44. Mecerreyes D, Alvaro V, Cantero I, Bengoetxea M, Calvo PA, Grande H, et al. Low surface energy conducting polypyrrole doped with a fluorinated counterion. Adv Mater. 2002;14:749–52.

    Article  CAS  Google Scholar 

  45. Boukerma K, Omastová M, Fedorko P, Chehimi MM. Surface properties and conductivity of bis(2-ethylhexyl) sulfosuccinate-containing polypyrrole. Appl Surf Sci. 2005;249:303–14.

    Article  CAS  Google Scholar 

  46. Beadle PM, Armes SP, Greaves SJ, Watts JF. X-ray photoelectron spectroscopy studies on sterically-stabilized polypyrrole particles. Langmuir. 1996;12:1784–8.

    Article  CAS  Google Scholar 

  47. Takeoka H, Fukui N, Sakurai S, Nakamura Y, Fujii S. Nanomorphology characterization of sterically stabilized polypyrrole-palladium nanocomposite particles. Polym J. 2014;46:704–9.

    Article  CAS  Google Scholar 

  48. Lascelles SF, Armes SP, Zhdan PA, Greaves SJ, Brown AM, Watts JF, et al. Surface characterization of micrometre-sized, polypyrrole-coated polystyrene latexes: verification of a ‘core–shell’ morphology. J Mater Chem. 1997;7:1349–55.

    Article  CAS  Google Scholar 

  49. Lei J, Martin CR. Infrared investigations of pristine polypyrrole — Is the polymer called polypyrrole really poly(pyrrole-co-hydroxypyrrole)? Synth Met. 1992;48:331–6.

    Article  CAS  Google Scholar 

  50. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG. The Handbook of infrared and raman characteristic frequencies of organic molecules. Academic Press: Boston, 1991; pp. 1 online resource (xvi, 503 pages). http://www.imperial.eblib.com/EBLWeb/patron/?target=patron&extendedid=P_1179794_0.

  51. Kawashima H, Okatani R, Mayama H, Nakamura Y, Fujii S. Synthesis of hydrophobic polyanilines as a light-responsive liquid marble stabilizer. Polymer. 2018;148:217–27.

    Article  CAS  Google Scholar 

  52. Budrowski C, Przyłuski J, Kucharski Z, Suwalski J. Stability of doped polypyrrole studied by Mössbauer spectroscopy. Synth Met. 1990;35:151–4.

    Article  CAS  Google Scholar 

  53. López Cascales JJ, Fernández AJ, Otero TF. Characterization of the reduced and oxidized polypyrrole/water interface: a molecular dynamics simulation study. J Phys Chem B. 2003;107:9339–43.

    Article  Google Scholar 

  54. Markham G, Obey TM, Vincent B. The preparation and properties of dispersions of electrically-conducting polypyrrole particles. Colloids Surf. 1990;51:239–53.

    Article  CAS  Google Scholar 

  55. Zhang X, Bai. Surface electric properties of polypyrrole in aqueous solutions. Langmuir. 2003;19:10703–9.

    Article  CAS  Google Scholar 

  56. Pei Q, Qian R. Protonation and deprotonation of polypyrrole chain in aqueous solutions. Synth Met. 1991;45:35–48.

    Article  CAS  Google Scholar 

  57. Beattie JK, Djerdjev AM. The pristine oil/water interface: surfactant-free hydroxide-charged emulsions. Angew Chem Int Ed. 2004;43:3568–71.

    Article  CAS  Google Scholar 

  58. Roger K, Cabane B. Why are hydrophobic/water interfaces negatively charged? Angew Chem Int Ed. 2012;51:5625–8.

    Article  CAS  Google Scholar 

  59. Takahashi M. ζ Potential of microbubbles in aqueous solutions: electrical properties of the gas−water interface. J Phys Chem B. 2005;109:21858–64.

    Article  CAS  PubMed  Google Scholar 

  60. Fujii S, Kakigi Y, Suzaki M, Yusa S-I, Muraoka M, Nakamura Y. Synthesis of stimuli-responsive macroazoinitiators and their use as an inistab toward hairy polymer latex particles. J Polym Sci, Part A: Polym Chem. 2009;47:3431–43.

    Article  CAS  Google Scholar 

  61. Sekido T, Kappl M, Butt HJ, Yusa S, Nakamura Y, Fujii S. Effects of pH on the structure and mechanical properties of dried pH-responsive latex particles. Soft Matter. 2017;13:7562–70.

    Article  CAS  PubMed  Google Scholar 

  62. Azioune A, Chehimi MM, Miksa B, Basinska T, Slomkowski S. Hydrophobic protein−polypyrrole interactions: the role of van der waals and lewis acid−base forces as determined by contact angle measurements. Langmuir. 2002;18:1150–6.

    Article  CAS  Google Scholar 

  63. Aussillous P, Quéré D. Properties of liquid marbles. Proc Math Phys Eng Sci. 2006;462:973–99.

    CAS  Google Scholar 

  64. Fujii S, Yusa S, Nakamura Y. Stimuli-responsive liquid marbles: controlling structure, shape, stability, and motion. Adv Funct Mater. 2016;26:7206–23.

    Article  CAS  Google Scholar 

  65. Ooi CH, Nguyen N-T. Manipulation of liquid marbles. Microfluid Nanofluid. 2015;19:483–95.

    Article  CAS  Google Scholar 

  66. Saczek J, Yao X, Zivkovic V, Mamlouk M, Wang D, Pramana SS, et al. Long‐lived liquid marbles for green applications. Adv Funct Mater. 2021;31:2011198.

  67. Bormashenko E. Liquid marbles, elastic nonstick droplets: from minireactors to self-propulsion. Langmuir. 2017;33:663–9.

    Article  CAS  PubMed  Google Scholar 

  68. Beck F, Braun P, Oberst M. Organic electrochemistry in the solid state-overoxidation of polypyrrole. Ber der Bunsenges für physikalische Chem. 1987;91:967–74.

    Article  CAS  Google Scholar 

  69. Gustafsson G, Lundström I, Liedberg B, Wu CR, Inganäs O, Wennerström O. The interaction between ammonia and poly(pyrrole). Synth Met. 1989;31:163–79.

    Article  CAS  Google Scholar 

  70. Zerbi G, Gussoni M, Castiglioni C. Vibrational Spectroscopy of Polyconjugated Aromatic Materials with Electrical and Non Linear Optical Properties. In Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials, Brédas, JL; Silbey, R, Eds. Springer Netherlands: Dordrecht, 1991; pp 435–507.

Download references

Funding

This work was supported by a Grant-in-Aid for Scientific Research (B) (JSPS KAKENHI Grant Number JP16H04207 and 20H02803) and Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks (JSPS KAKENHI Grant Number JP15H00767)”.

Author information

Authors and Affiliations

Authors

Contributions

MS: methodology, investigation. YA: methodology, investigation. HK: methodology, investigation. TH: methodology, investigation. YN: methodology, investigation. SF: conceptualization, methodology, investigation, writing–original draft, writing–review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Syuji Fujii.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seike, M., Asaumi, Y., Kawashima, H. et al. Morphological and chemical stabilities of polypyrrole in aqueous media for 1 year. Polym J 54, 169–178 (2022). https://doi.org/10.1038/s41428-021-00572-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00572-1

Search

Quick links