Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Micellar structure of hydrophobically modified polysaccharides in aqueous solution

Abstract

This article reviews previous studies on micellar structures formed by hydrophobically modified polysaccharides in aqueous solutions by static and dynamic light scattering, small angle X-ray and neutron scattering, and fluorescence from pyrene solubilized in polymer solution. The experimental results are consistently explained by the full or loose flower necklace model for pullulan bearing octenyl groups and amylose bearing dodecyl groups and by the randomly branched polymer model, which is often called a “nanogel”, for pullulan bearing cholesteryl groups. We discuss the micellar structures of hydrophobically modified polysaccharides as well as of an amphiphilic alternating vinyl polymer bearing dodecyl groups in regard to the degree of substitution as well as the chemical structures of the hydrophobic moiety and backbone chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 2001;47:83–97.

    Article  CAS  Google Scholar 

  2. Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2005;12:41–57.

    Article  CAS  Google Scholar 

  3. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–62.

    Article  CAS  Google Scholar 

  4. Prajapati VD, Jani GK, Khanda SM. Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym. 2013;95:540–9.

    Article  CAS  Google Scholar 

  5. Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: a novel molecule for biomedical applications. Carbohydr Polym. 2017;171:102–21.

    Article  CAS  Google Scholar 

  6. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J. Self-aggregates of hydrophobized polysaccharides in water. formation and characteristics of nanoparticles. Macromolecules. 1993;26:3062–8.

    Article  CAS  Google Scholar 

  7. Akiyoshi K, Sasaki Y, Sunamoto J. Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B. Bioconjugate Chem. 1999;10:321–4.

    Article  CAS  Google Scholar 

  8. Nomura Y, Sasaki Y, Takagi M, Narita T, Aoyama Y, Akiyoshi K. Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin: heat shock protein-like activity of artificial molecular chaperone. Biomacromolecules. 2005;6:447–52.

    Article  CAS  Google Scholar 

  9. Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Pure Appl Chem. 1994;A31:629–42.

    CAS  Google Scholar 

  10. Ouchi T, Nishizawa H, Ohya Y. Aggregation phenomenon of PEG-grafted chitosan in aqueous solution. Polymer. 1998;39:5171–5.

    Article  CAS  Google Scholar 

  11. Calvo PC, Remuňán-López C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63:125–32.

    Article  CAS  Google Scholar 

  12. Mumper RJ, Wang J, Claspell JM, Rolland AP. Novel polymeric condensing carriers for gene delivery. Proc Int Symp Control Rel Bioact Mater. 1995;22:178–9.

    Google Scholar 

  13. Eenschooten C, Guillaumie F, Kontogeorgis GM, Stenby EH, Schwach-Abdellaoui K. Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride–modified hyaluronic acid derivatives. Carbohydr Polym. 2010;79:597–605.

    Article  CAS  Google Scholar 

  14. Kawata T, Hashidzume A, Sato T. Micellar structure of amphiphilic statistical copolymers bearing dodecyl hydrophobes in aqueous media. Macromolecules. 2007;40:1174–80.

    Article  CAS  Google Scholar 

  15. Tominaga Y, Mizuse M, Hashidzume A, Morishima Y, Sato T. Flower micelle of amphiphilic random copolymers in aqueous media. J Phys Chem B. 2010;114:11403–8.

    Article  CAS  Google Scholar 

  16. Ueda M, Hashidzume A, Sato T. Unicore−multicore transition of the micelle formed by an amphiphilic alternating copolymer in aqueous media by changing molecular weight. Macromolecules. 2011;44:2970–7.

    Article  CAS  Google Scholar 

  17. Uramoto K, Takahashi R, Terao K, Sato T. Local and global conformations of flower micelles and flower necklaces formed by an amphiphilic alternating copolymer in aqueous solution. Polym J. 2016;48:863–7.

    Article  CAS  Google Scholar 

  18. Sato T. Theory of the flower micelle formation of amphiphilic random and periodic copolymers in solution. Polymers. 2018;10:73.

    Article  Google Scholar 

  19. Kameyama Y, Kitamura S, Sato T, Terao K. Self-assembly of amphiphilic amylose derivatives in aqueous media. Langmuir. 2019;35:6719–26.

    Article  CAS  Google Scholar 

  20. Yang J, Sato T. Micellar structure of a hydrophobically modified pullulan in an aqueous solution. Macromolecules. 2020;53:7970–9.

    Article  CAS  Google Scholar 

  21. Yang J, Sato T. Transition from the random coil to the flower necklace of a hydrophobically modified pullulan in aqueous solution by changing the degree of substitution. Polymer. 2021;214:123346.

    Article  CAS  Google Scholar 

  22. Yang J, Sato T. Characterization of the micelle formed by a hydrophobically modified pullulan in aqueous solution: size exclusion chromatography. Polymers. 2021;13:1237.

    Article  CAS  Google Scholar 

  23. Eenschooten C, Vaccaro A, Delie F, Guillaumie F, Tømmeraas K, Kontogeorgis GM, et al. Novel self-associative and multiphasic nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives. Carbohydr Polym. 2012;87:444–51.

    Article  CAS  Google Scholar 

  24. Neves-Petersen MT, Klitgaard S, Skovsen E, Petersen SB, Tømmeraas K, Schwach-Abdellaoui K. Biophysical properties of phenyl succinic acid derivatised hyaluronic acid. J Fluoresc. 2010;20:483–92.

    Article  CAS  Google Scholar 

  25. Tømmeraas K, Mellergaard M, Malle BM, Skagerlind P. New amphiphilic hyaluronan derivatives based on modification with alkenyl and aryl succinic anhydrides. Carbohydr Polym. 2011;85:173–9.

    Article  Google Scholar 

  26. Yamakawa H, Yoshizaki T. Helical wormlike chains in polymer solutions, 2nd ed. Berlin/Heidelberg, Germany: Springer; 2016. ISBN 978-3-662–48714–3.

  27. Yamakawa H, Stockmayer WH. Statistical mechanics of wormlike chains. II. Excluded volume effects. J Chem Phys. 1972;57:2843–54.

    Article  CAS  Google Scholar 

  28. Kurata M, Fukatsu M. Unperturbed dimension and translational friction constant of branched polymers. J Chem Phys. 1964;41:2934–44.

    Article  CAS  Google Scholar 

  29. Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99:2039–44.

    Article  CAS  Google Scholar 

  30. Lianos P, Zana R. Use of pyrene excimer formation to study the effect of NaCl on the structure of sodium dodecyl sulfate micelles. J Phys Che.m 1980;84:3339–41.

    Article  CAS  Google Scholar 

  31. Hashidzume A, Kawaguchi A, Tagawa A, Hyoda K, Sato T. Synthesis and structural analysis of self-associating amphiphilic statistical copolymers in aqueous media. Macromolecules. 2006;39:1135–43.

    Article  CAS  Google Scholar 

  32. Akiyoshi K, Deguchi S, Tajima H, Nishikawa T, Sunamoto J. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules. 1997;30:857–61.

    Article  CAS  Google Scholar 

  33. Turro NJ, Yekta A. Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation Nnmber of micelles. J Am Chem Soc. 1978;100:5951–2.

    Article  CAS  Google Scholar 

  34. Yang J, Sato T. Conformation of pullulan in aqueous solution studied by small-angle X-ray scattering. Polymers. 2020;12:1266.

    Article  CAS  Google Scholar 

  35. Pedersen JS, Schurtenberger P. Scattering functions of semiflexible polymers with and without excluded volume effects. Macromolecules. 1996;29:7602–12.

    Article  CAS  Google Scholar 

  36. Inomoto N, Osaka N, Suzuki T, Hasegawa U, Ozawa Y, Endo H, et al. Interaction of nanogel with cyclodextrin or protein: study by dynamic light scattering and small-angle neutron scattering. Polymer. 2009;50:541–6.

    Article  CAS  Google Scholar 

  37. Kuroda K, Fujimoto K, Sunamoto J, Akiyoshi K. Hierarchical self-assembly of hydrophobically modified pullulan in water: gelation by networks of nanoparticles. Langmuir. 2002;18:3780–6.

    Article  CAS  Google Scholar 

  38. Kanao M, Matsuda Y, Sato T. Characterization of polymer solutions containing a small amount of aggregates by static and dynamic light scattering. Macromolecules. 2003;36:2093–102.

    Article  CAS  Google Scholar 

  39. Eenschooten C, Development of soft nanocarriers from novel amphiphilic, Ph.D. Thesis, in Hyaluronic Acid Derivatives towards Drug Delivery, Technical University of Denmark, 2008.

  40. Kawaguchi Y, Matsukawa K, Ishigami Y. Conformational changes of hyaluronates with partial palmitoylation and the adsorption structures on the surface of oil droplets. Carbohydr Polym. 1993;20:183–7.

    Article  CAS  Google Scholar 

  41. Terao K, Farmer BS, Nakamura Y, Iatrou H, Hong K, Mays JM. Radius of gyration of polystyrene combs and centipedes in a Θ solvent. Macromolecules. 2005;38:1447–50.

    Article  CAS  Google Scholar 

  42. Zhang B, Grohn F, Pedersen JS, Fischer K, Schmidt M. Conformation of cylindrical brushes in solution: effect of side chain length. Macromolecules. 2006;39:8440–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Daichi Ida at Kyoto University for correcting Eq. (24) of ref. [28], and Dr. Shin-ichi Yusa at the University of Hyogo and Dr. Akihito Hashidzume at Osaka University for valuable discussion. This work was supported in part by JSPS KAKENHI Grant No. 18H02020. The synchrotron radiation experiments were performed at the BL40B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2019B1375, 2016B1088, 2015B1100, 2015A1179, 2014B1715, and 2014B1087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Sato.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Yang, J. & Terao, K. Micellar structure of hydrophobically modified polysaccharides in aqueous solution. Polym J 54, 403–412 (2022). https://doi.org/10.1038/s41428-021-00561-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00561-4

This article is cited by

Search

Quick links