Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Liquid-liquid phase separation and self-assembly of a lysine derivative Fmoc-L-lysine in water-DMSO mixtures

Abstract

The self-assembly process of a lysine derivative (9-fluorenylmethyloxycarbonyl-l-lysine; Fmoc-Lys) in water-DMSO mixtures was investigated by time-resolved static and dynamic light scattering (SLS and DLS), small-angle X-ray scattering (SAXS), optical microscopy (OM), and scanning electron microscopy (SEM). SLS, DLS, and SAXS indicated liquid–liquid phase separation caused by the addition of water to the DMSO solution of Fmoc-Lys and the formation of spherical droplets of the phase-separating concentrated phase with concentrations as high as 0.6 g/cm3. However, in the colloidal phase-separating solution, the concentrated phase droplets did not grow through the Ostwald ripening process, but OM and SEM implied that a crystal phase of Fmoc-Lys appeared after a long lag phase in the phase-separating solution. This crystallization process for Fmoc-Lys after liquid–liquid phase separation in DMSO-water mixtures has been reproduced semiquantitatively by lattice theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gazit E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 2007;36:1263–1269.

    Article  CAS  PubMed  Google Scholar 

  2. Diaferia C, Morelli G, Accardo A. Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. J Mater Chem B 2019;7:5142–5155.

    Article  CAS  PubMed  Google Scholar 

  3. Yan X, Zhu P, Li J. Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 2010;39:1877–1890.

    Article  CAS  PubMed  Google Scholar 

  4. Koley P, Pramanik A. Nanostructures from single amino acid-based molecules: stability, fibrillation, encapsulation, and fabrication of silver nanoparticles. Adv Funct Mater 2011;21:4126–4136.

    Article  CAS  Google Scholar 

  5. Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE et al. Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 2010;39:3480–3498.

    Article  CAS  PubMed  Google Scholar 

  6. Mariano V & Shunsaku K. Special issue: peptide materials. Polym J. 2013;45:467–539.

  7. Lehn JM. Supramolecular chemistry. VCH;1995.

  8. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002;295:2418–2421.

    Article  CAS  PubMed  Google Scholar 

  9. Hidaka H, Murata M, Onai T. Helical aggregates of chiral N-(2-hydroxydodecyl) amino acids. J Chem Soc Chem Commun 1984;9:562–564.

    Article  Google Scholar 

  10. Imae T, Takahashi Y, Muramatsu H. Formation of fibrous molecular assemblies by amino acid surfactants in water. J Am Chem Soc 1992;114:3414–3419.

    Article  CAS  Google Scholar 

  11. Hanabusa K, Suzuki M. Development of low-molecular-weight gelators and polymer-based gelators. Polym J 2014;46:776–782.

    Article  CAS  Google Scholar 

  12. Suzuki M, Hanabusa K. L-Lysine-based low-molecular-weight gelators. Chem Soc Rev 2009;38:967–975.

    Article  CAS  PubMed  Google Scholar 

  13. Dasgupta A, Mondal JH, Das D. Peptide hydrogels. RSC Adv 2013;3:9117–9149.

    Article  CAS  Google Scholar 

  14. Raeburn J, Cardoso AZ, Adams DJ. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 2013;42:5143–5156.

    Article  CAS  PubMed  Google Scholar 

  15. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature. 1993;366:324–327.

    Article  CAS  PubMed  Google Scholar 

  16. Ghadiri MR, Granja JR, Buehler LK. Nature, artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 1994;369:301–304.

    Article  CAS  PubMed  Google Scholar 

  17. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA 2000;97:6728–6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684–1688.

    Article  CAS  PubMed  Google Scholar 

  19. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003;300:625–627.

    Article  CAS  PubMed  Google Scholar 

  20. Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF et al. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 2006;103:5054–5059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sutton S, Campbell NL, Cooper AI, Kirkland M, Frith WJ, Adams DJ. Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics. Langmuir 2009;25:10285–10291.

    Article  CAS  PubMed  Google Scholar 

  22. Yemini M, Reches M, Rishpon J, Gazit E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 2005;5:183–186.

    Article  CAS  PubMed  Google Scholar 

  23. Horne WS, Ashkenasy N, Ghadiri MR. modulating charge transfer through cyclic D,L-α-peptide self-assembly. Chem Eur J 2005;11:1137–1144.

    Article  CAS  PubMed  Google Scholar 

  24. Ueda M, Makino A, Imai T, Sugiyama J, Kimura S. Versatile peptide rafts for conjugate morphologies by self-assembling amphiphilic helical peptides. Polym J 2013;45:509–515.

    Article  CAS  Google Scholar 

  25. Matsuura K, Watanabe K, Matsushita Y, Kimizuka N. Guest-binding behavior of peptide nanocapsules self-assembled from viral peptide fragments. Polym J 2013;45:529–534.

    Article  CAS  Google Scholar 

  26. Koga T, Ushirogochi M, Higashi N. Regulation of self-assembling process of a cationic β-sheet peptide by photoisomerization of an anionic Azobenzene derivative. Polym J 2007;39:16–17.

    Article  CAS  Google Scholar 

  27. Longo E, Crisma M, Formaggio F, Toniolo C, Moretto A. Hydrophobic Aib/Ala peptides solubilize in water through formation of supramolecular assemblies. Polym J 2013;45:516–522.

    Article  CAS  Google Scholar 

  28. Tsutsumi H, Matsubaral D, Mihara H. Functionalization of self-assembling peptide materials using molecular recognition of supramolecular peptide nanofibers. Polym J 2020;52:913–922.

    Article  CAS  Google Scholar 

  29. Ke P, Zhou R, Serpell L, Riek R, Knowles T, Lashuel H et al. Half a century of amyloids: past, present and future. Chem Soc Rev 2020;49:5473–5509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adler-Abramovich L, Vaks L, Carny O, Trudler D, Magno A, Caflisch A et al. Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat Chem Biol 2012;8:701–706.

    Article  CAS  PubMed  Google Scholar 

  31. Ménard-Moyon C, Venkatesh V, Krishna K, Bonachera F, Verma S, Bianco A. Self-assembly of tyrosine into controlled supramolecular nanostructures. Chem Eur J 2015;21:11681–11686.

    Article  PubMed  Google Scholar 

  32. Zaguri D, Kreiser T, Shaham-Niv S, Gazit E. Antibodies towards tyrosine amyloid-like fibrils allow toxicity modulation and cellular imaging of the assemblies. Molecules. 2018;23:1273.

    Article  PubMed Central  Google Scholar 

  33. Shaham-Niv S, Rehak P, Vuković L, Adler-Abramovich L, Král P, Gazit E. Formation of apoptosis-inducing amyloid fibrils by tryptophan. Isr J Chem 2016;57:729–737.

    Article  Google Scholar 

  34. Singh P, Narang N, Sharma R, Wangoo N. Interplay of self-assembling aromatic amino acids and functionalized gold nanoparticles generating supramolecular structures. ACS Appl BioMater 2020;3:6196–6203.

    Article  CAS  Google Scholar 

  35. Singh P, Pandey S, Grover A, Sharma R, Wangoo N. Understanding the self-ordering of amino acids into supramolecular architectures: co-assembly-based modulation of phenylalanine nanofibrils. Mater Chem Front 2021;5:1971–1981.

    Article  CAS  Google Scholar 

  36. Gour N, Kanth PC, Koshti B, Kshtriya V, Shah D, Patel S, et al. Amyloid-like structures formed by single amino acid self-assemblies of cysteine and methionine. ACS Chem Neurosci 2018;10:1230–1239.

    Article  PubMed  Google Scholar 

  37. Singh P, Brar S, Bajaj M, Narang N, Mithu V, Katare OP et al. Self-assembly of aromatic α-amino acids into amyloid inspired nano/micro scaled architects. Mater Sci Eng C 2017;72:590–600.

    Article  CAS  Google Scholar 

  38. Singh V, Rai R, Arora A, Sinha N, Thakur A. Therapeutic implication of L-phenylalanine aggregation mechanism and its modulation by D-phenylalanine in phenylketonuria. Sci Rep 2014;4:3875.

  39. Babar D, Sarkar S. Self-assembled nanotubes from single fluorescent amino acid. Appl Nanosci 2017;7:101–107.

    Article  CAS  Google Scholar 

  40. Chakraborty P, Bairi P, Mondal S, Nandi A. Co-assembled conductive hydrogel of n-fluorenylmethoxycarbonyl phenylalanine with polyaniline. J Phys Chem B 2014;118:13969–13980.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen-Gerassi D, Arnon Z, Guterman T, Levin A, Ghosh M, Aviv M et al. Phase transition and crystallization kinetics of a supramolecular system in a microfluidic platform. Chem Mater 2020;32:8342–8349.

    Article  CAS  Google Scholar 

  42. Sato T, Tanaka K, Toyokura A, Mori R, Takahashi R, Terao K et al. Self-association of a thermosensitive amphiphilic block copolymer poly(N-isopropylacrylamide)-b-poly(N-vinyl-2-pyrrolidone) in aqueous solution upon heating. Macromolecules. 2012;46:226–235.

    Article  Google Scholar 

  43. Kanao M, Matsuda Y, Sato T. Characterization of polymer solutions containing a small amount of aggregates by static and dynamic light scattering. Macromolecules 2003;36:2093–2102.

    Article  CAS  Google Scholar 

  44. Yamakawa H, Yoshizaki T. Helical wormlike chains in polymer solutions. 2nd ed. Springer: Berlin & Heidelberg; 2016.

  45. Sato T, Jinbo Y, Teramoto A. Light scattering study of semiflexible polymer solutions III. multicomponent solutions. Polym J 1999;31:285–292.

    Article  CAS  Google Scholar 

  46. Kuang C, Yusa S, Sato T. Micellization and phase separation in aqueous solutions of thermosensitive block copolymer poly(N-isopropylacrylamide)-b-poly(N-vinyl-2-pyrrolidone) upon heating. Macromolecules 2019;52:4812–4819.

    Article  CAS  Google Scholar 

  47. Gunton J D, San Miguel M, Sahni PS. The dynamics of first-order phase transitions. London: Academic Press; 1983.

  48. Lifshitz I, Slyozov V. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 1961;19:35–50.

    Article  Google Scholar 

  49. Tanaka H. Appearance of a moving droplet phase and unusual networklike or spongelike patterns in a phase-separating polymer solution with a double-well-shaped phase diagram. Macromolecules 1992;25:6377–6380.

    Article  CAS  Google Scholar 

  50. Liu K, Abass M, Zou Q, Yan X. Self-assembly of biomimetic light-harvesting complexes capable of hydrogen evolution. GEE. 2017;2:58–63.

    Google Scholar 

  51. Singh P, Manhas P, Sharma R, Pandey S, Sharma RK, Katare OP et al. Self-assembled dipeptide nanospheres as single component based delivery vehicle for ampicillin and doxorubicin. J Mol Liq 2020;312:113420.

    Article  CAS  Google Scholar 

  52. Flory PJ. Principles of polymer chemistry. Cornell Univ. Press; 1953.

  53. Huggins ML. Thermodynamic properties of solutions of long-chain compounds. Ann N Y Acad Sci. 1942;43:1.

    Article  CAS  Google Scholar 

  54. Richards R. The phase equilibria between a crystalline polymer and solvents. Trans Faraday Soc 1946;42:10–28.

    Article  CAS  Google Scholar 

  55. Raine H, Richards R, Ryder H. The heat capacity, heat of solution, and crystallinity of polythene. Trans Faraday Soc 1945;41:56–64.

    Article  CAS  Google Scholar 

  56. Flory P, Mandelkern L, Hall H. Crystallization in high polymers. VII. heat of fusion of poly-(N,N’-sebacoylpiperazine) and its interaction with diluents. J Am Chem Soc. 1951;73:2532–2538.

    Article  CAS  Google Scholar 

  57. Ryan D, Doran T, Anderson S, Nilsson B. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Langmuir 2011;27:4029–4039.

    Article  CAS  PubMed  Google Scholar 

  58. Chakraborty P, Gazit E. Amino acid based self-assembled nanostructures: complex structures from remarkably simple building blocks. ChemNanoMat 2018;4:730–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation experiments were performed at BL40B2 in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2019B1375). We thank Dr. K. Terao at Osaka University for helping with the SAXS measurements and Prof. Y. Goto at Osaka University for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Sato.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narang, N., Sato, T. Liquid-liquid phase separation and self-assembly of a lysine derivative Fmoc-L-lysine in water-DMSO mixtures. Polym J 53, 1413–1424 (2021). https://doi.org/10.1038/s41428-021-00538-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00538-3

This article is cited by

Search

Quick links