Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fabrication and evaluation of durable, optically clear, and self-disinfecting films

Abstract

Phenoxy-substituted phthalocyanine zinc (PPcZn) was synthesized and used as a photosensitizer to prepare a variety of self-disinfecting films by incorporating it into a cellulose acetate (CA) film at various concentrations. The generation of singlet oxygen (1O2) from the films containing PPcZn irradiated with visible light was detected by a film containing 1,3-diphenylisobenzofuran (DPBF). The rate of 1O2 generation followed a pseudofirst-order kinetic model. Antiviral activity was confirmed under visible light irradiation using Bacteriophage Qβ. The film exhibited superior water resistance, photostability, mechanical strength, and sustained 1O2 production over 6 months under continuous exposure to room light. These data show the promise of this film in real-life applications as self-disinfecting surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Biyiklioglu Z, Ozturk I, Arslan T, Tunçel A, Ocakoglu K, Hosgor-Limoncu M. et al. Synthesis and antimicrobial photodynamic activities of axially {4-[(1E)-3-oxo-3-(2-thienyl)prop-1-en-1-yl]phenoxy} groups substituted silicon phthalocyanine, subphthalocyanine on Gram-positive and Gram-negative bacteria. Dye Pigment. 2019;166:149–58.

    Article  CAS  Google Scholar 

  2. Gomez-Rios D, Ramirez-Malule H. Bibliometric analysis of recent research on multidrug and antibiotics resistance (2017–2018). J Appl Pharm Sci. 2019;9:112–6.

    Article  Google Scholar 

  3. Nakonechny F, Barel M, David A, Koretz S, Litvak B, Ragozin E, et al. Dark Antibacterial Activity of Rose Bengal. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20133196.

  4. Baigorria E, Milanesio ME, Durantini EN. Synthesis, spectroscopic properties and photodynamic activity of Zn(II) phthalocyanine-polymer conjugates as antimicrobial agents. Eur Poly J. 2020;134. https://doi.org/10.1016/j.eurpolymj.2020.109816.

  5. Schäfer M, Schmitz C, Facius R, Hormeck G, Milow B, Funken KH, et al. Systematic Study of Parameters Influencing the Action of Rose Bengal With Visible Light on Bacterial Cells: Comparison Between the Biological Effect and Singlet-Oxygen Production. Photochem Photobiol. 2000;71:514.

    Article  PubMed  Google Scholar 

  6. Walker T, Canales M, Noimark S, Page K, Parkin I, Faull J, et al. Antimicrobial Surface Is Active Against Bacterial, Viral and Fungal Organisms. Sci Rep. 2017;7:15298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Weng D, Qi H, Wu TT, Yan M, Sun R, Lu Y. Visible light powered self-disinfecting coatings for influenza viruses. Nanoscale. 2012;4:2870–4.

    Article  CAS  PubMed  Google Scholar 

  8. Korneev D, Kurskaya O, Sharshov K, Eastwood J, Strakhovskaya M. Ultrastructural Aspects of Photodynamic Inactivation of Highly Pathogenic Avian H5N8 Influenza Virus. Viruses. 2019;11:955.

    Article  CAS  PubMed Central  Google Scholar 

  9. Tavares A, Carvalho CM, Faustino MA, Neves MG, Tome JP, Tome AC, et al. Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs. 2010;8:91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kashef N, Hamblin MR. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist Updat. 2017;31:31–42.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Noimark S, Dunnill CW, Parkin IP. Shining light on materials–a self-sterilising revolution. Adv Drug Deliv Rev. 2013;65:570–80.

    Article  CAS  PubMed  Google Scholar 

  12. Forte Giacobone AF, Ruiz Gale MF, Hogert EN, Oppezzo OJ. A possible phenomenon of persistence in Pseudomonas aeruginosa treated with methylene blue and red light. Photochem Photobio. 2016;92:702–7.

    Article  CAS  Google Scholar 

  13. Weber DJ, Rutala WA. Self-disinfecting surfaces: review of current methodologies and future prospects. Am J Infect Control. 2013;41:531–5.

    Article  Google Scholar 

  14. Querido MM, Aguiar L, Neves P, Pereira CC, Teixeira JP. Self-disinfecting surfaces and infection control. Colloids Surf B Biointerfaces. 2019;178:8–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Page K, Wilson M, Parkin IP. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem. 2009;19:3819.

    Article  CAS  Google Scholar 

  16. Mesquita MQ, Dias CJ, Neves MGPMS, Almeida A, Faustino MAF. Revisiting current photoactive materials for antimicrobial photodynamic therapy. Molecules. 2018;23:2424.

    Article  CAS  Google Scholar 

  17. Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M. A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization. Photochem Photobiol. 1998;68:370–6.

    Article  CAS  PubMed  Google Scholar 

  18. Wainwright M. Acridine-a neglected antibacterial chromophore. J Antimicrob Chemother. 2001;47:1–13.

    Article  CAS  PubMed  Google Scholar 

  19. Carpenter BL, Scholle F, Sadeghifar H, Francis AJ, Boltersdorf J, Weare WW, et al. Synthesis, characterization, and antimicrobial efficacy of photomicrobicidal cellulose paper. Biomacromolecules. 2015;16:2482–92.

    Article  CAS  PubMed  Google Scholar 

  20. Moreira LM, Santos FV, Lyon JP, Maftoum-Costa M, Pacheco-Soares C, Silva NS. Photodynamic therapy: porphyrins and phthalocyanines as photosensitizers. Aust J Chem. 2008;61:741–54.

    Article  CAS  Google Scholar 

  21. George L, Müller A, Röder B, Santala V, Efimov A. Photodynamic self–disinfecting surface using pyridinium phthalocyanine. Dyes Pigments. 2017;147:334–42.

    Article  CAS  Google Scholar 

  22. Grammatikova NE, George L, Ahmed Z, Candeias NR, Durandin NA, Efimov A. Zinc phthalocyanine activated by conventional indoor light makes a highly efficient antimicrobial material from regular cellulose. J Mater Chem B. 2019;7:4379–84.

    Article  CAS  Google Scholar 

  23. Lamberts JJM, Schumacher DR, Neckers DC. Novel rose bengal derivatives: synthesis and quantum yield studies. J Am Chem Soc. 1984;106:5879–83.

    Article  CAS  Google Scholar 

  24. Decraene VR, Pratten J, Wilson M. Cellulose acetate containing toluidine blue and rose bengal is an effective antimicrobial coating when exposed to white light. Appl Environ Microbiol. 2006;72:4436–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Decraene V, Pratten J, Wilson M. Assessment of the activity of a novel light-activated antimicrobial coating in a clinical environment. Infect Control Hosp Epidemiol 2008;29:1181.

    Article  PubMed  Google Scholar 

  26. Nassar SJM, Wills C, Harriman A. Inhibition of the photobleaching of methylene blue by association with urea. ChemPhotoChem. 2019;3:1042–9.

    Article  CAS  Google Scholar 

  27. Robinson-Duggon J, Marino-Ocampo N, Barrias P, Zuniga-Nunez D, Gunther G, Edwards AM, et al. Mechanism of visible-light photooxidative demethylation of toluidine blue O. J Phys Chem A. 2019;123:4863–72.

    Article  CAS  PubMed  Google Scholar 

  28. Gerdes R, Bartels O, Schnider G, Wöhrle D, Schulz-Ekloff G. Photooxidations of phenol, cyclopentadiene and citronellol with photosensitizers ionically bound at a polymeric ion exchanger. Polym Adv Technol. 2001;12:152–16.

    Article  CAS  Google Scholar 

  29. Kenley RA, Kirshen NA, Mill T. Photooxidation of Di-n-butyl sulfide using sensitizers immobilized in polymer films. Macromolecules. 1980;13:808–15.

    Article  CAS  Google Scholar 

  30. Lyutakov O, Hejna O, Solovyev A, Kalachyova Y, Svorcik V. Polymethylmethacrylate doped with porphyrin and silver nanoparticles as light-activated antimicrobial material. RSC Adv. 2014;4:50624–30.

    Article  CAS  Google Scholar 

  31. Bonnett R, Buckley DG, Burrow T, Galia ABB, Saville E, Songca SP. Photobactericidal materials based on porphyrins and phthalocyanines. J Mater Chem. 1993;3:323–4.

    Article  CAS  Google Scholar 

  32. Makhseed S, Al-Sawah M, Samuel J, Manaa H. Synthesis, characterization and nonlinear optical properties of nonaggregating hexadeca-substituted phthalocyanines. Tetrahedron Lett. 2009;50:165–8.

    Article  CAS  Google Scholar 

  33. Zhang X-F, Xi Q, Zhao J. Fluorescent and triplet state photoactive J-type phthalocyanine nano assemblies: controlled formation and photosensitizing properties. J Mater Chem. 2010;20:6726–33.

    Article  CAS  Google Scholar 

  34. Kucinska M, Skupin-Mrugalska P, Szczolko W, Sobotta L, Sciepura M, Tykarska E, et al. Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy. J Med Chem. 2015;58:2240–55.

    Article  CAS  PubMed  Google Scholar 

  35. Trashin S, Rahemi V, Ramji K, Neven L, Gorun SM, De Wael K. Singlet oxygen-based electrosensing by molecular photosensitizers. Nat Commun. 2017;8. https://doi.org/10.1038/ncomms16108.

  36. Zhdankin VV, Nemykin VN, Lukyanets EA. Synthesis of substituted phthalocyanines. Arkivoc. 2010;2010:136–208.

    Article  Google Scholar 

  37. Entradas T, Waldron S, Volk M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J Photochem Photobio B. 2020;204:111787.

    Article  CAS  Google Scholar 

  38. Harada N, Kataoka M, Nakanosho M, Uyama H. Penetration of singlet oxygen into films with oxygen permeability coefficient close to that of skin. Photochem Photobiol. https://doi.org/10.1111/php.13446 (in the press).

  39. Revuelta-Maza MA, Nonell S, de la Torre G, Torres T. Boosting the singlet oxygen photosensitization abilities of Zn(ii) phthalocyanines through functionalization with bulky fluorinated substituents. Org Biomol Chem. 2019;17:7448–54.

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura J, Miyoshi Y, Masuda G, Aoki M. Curable resin composition for imaging element and application thereof, JP6251530B2, 2017.

  41. Litman Y, Rodriguez HB, San Roman E. Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: phloxine B in poly(2-hydroxyethyl methacrylate). Photochem Photobio Sci. 2016;15:80–5.

    Article  CAS  Google Scholar 

  42. Zhang XF, Xu HJ. Influence of halogenation and aggregation on photosensitizing properties of zinc phthalocyanine (ZnPC). J Chem Soc Faraday Trans. 1993;89:3347–51.

    Article  CAS  Google Scholar 

  43. Chidawanyika W, Ogunsipe A, Nyokong T. Syntheses and photophysics of new phthalocyanine derivatives of zinc, cadmium and mercury. N. J Chem. 2007;31:377–84.

    Article  CAS  Google Scholar 

  44. George S, Kishen A. Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. J Biomed Opt. 2007;12:034029.

    Article  PubMed  CAS  Google Scholar 

  45. Pena Luengas SL, Marin GH, Aviles K, Cruz Acuna R, Roque G, Rodriguez Nieto F, et al. Enhanced singlet oxygen production by photodynamic therapy and a novel method for its intracellular measurement. Cancer Biother Radiopharm. 2014;29:435–43.

    PubMed  CAS  Google Scholar 

  46. Wang P, Qin F, Zhang Z, Cao W. Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer. Opt Express. 2015;23:22991–3003.

    Article  CAS  PubMed  Google Scholar 

  47. Akarsu E, Uslu R. Light-activated hybrid organic/inorganic antimicrobial coatings. J Sol-Gel Sci Technol. 2018;87:183–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nobuyuki Harada or Hiroshi Uyama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, N., Masuda, K., Nakamura, Ji. et al. Fabrication and evaluation of durable, optically clear, and self-disinfecting films. Polym J 53, 1383–1391 (2021). https://doi.org/10.1038/s41428-021-00532-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00532-9

Search

Quick links