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Abstract
We recently found that the energy contribution to the linear elasticity of polymer gels in the as-prepared state can be a
significant negative value; the shear modulus is not proportional to the absolute temperature [1]. Our finding challenges the
conventional notion that the polymer-gel elasticity is mainly determined by the entropy contribution. Existing molecular
models of classical rubber elasticity theories, including the affine, phantom, and junction affine network models, cannot be
used to estimate the structural parameters of polymer gels. In this focus review, we summarize the experimental studies on
the linear elasticity of polymer gels in the as-prepared state using tetra-arm poly(ethylene glycol) (PEG) hydrogels with a
homogenous polymer network. We also provide a unified formula for the linear elasticity of polymer gels with various
network topologies and densities. Using the unified formula, we reconcile the past experimental results that seemed to be
inconsistent with each other. Finally, we mention that there are still fundamental unresolved problems involving the linear
elasticity of polymer gels.

Introduction

Polymer gels are widely used in food products such as
yogurt, tofu and jelly [2–4], and in biomaterials such as
anti-adhesion agents, hemostatic agents, and soft contact
lenses [5–7]. For these applications, it is important to con-
trol the stiffness of polymer gels. For example, flexible
polymer gels are used in artificial vitreous substitutes and
food for dysphagia, and stiff polymer gels are used in
hemostatic agents and artificial cartilage. By optimizing the
polymer gel stiffness for its intended use, the quality of life
(QOL) can be improved in various situations.

Despite the importance of controlling the stiffness, it is
an open question how the stiffness of a polymer gel is
determined by its microscopic network structure. The elastic
behavior of polymer gels, which are usually regarded as
rubber containing a large amount of solvent, has been

conventionally analyzed and predicted based on models of
classical rubber elasticity theories, such as the affine [8],
phantom [9], and junction affine network models [10].
However, it is difficult to verify the applicability of these
microscopic models to the macroscopic properties of
polymer gels because conventional polymer gels inherently
have inhomogeneous network structures [11]. Thus, the
determination of the appropriate microscopic model
describing polymer-gel elasticity remains to be achieved
[12, 13].

In recent years, we overcame the difficulty of inhomo-
geneity by developing a tetra-arm poly(ethylene glycol)
(PEG) hydrogel (tetra gel) [14] with a homogeneous network
structure [15] (Fig. 1a). In the tetra gel, we can independently
and systematically control the structure of the polymer net-
work, as shown in Fig. 1b. Using tetra gels, we have studied
the linear elasticity of polymer gels in the as-prepared state by
various experimental techniques [14, 16–18].

Until recently, we analyzed our experiments using the
existing models of the classical rubber elasticity theories but
observed inconsistencies with respect to the interpretations
of experimental results as described in section “Past
experimental results of linear elasticity in tetra gels.” A very
recent discovery revealed that polymer gels have “negative
energy elasticity” [1], namely, a significant negative internal
energy contribution to the shear modulus originating from
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the solvent. This is not considered in the classical rubber
elasticity theories, which assume that the elastic modulus is
mainly determined from the entropy contribution. As the
internal energy contribution is significant and negative, the
(hidden) entropy contribution is large compared to the total
modulus. Our discovery challenges the conventional notion
that elasticity of polymer gel can be understood by the
classical rubber elasticity theories.

In this focus review, we describe how past experimental
results on the linear elasticity of polymer gels can be suc-
cessfully explained by the existence of negative energy
elasticity. The review is organized as follows. First, we
briefly review the experimental study on the linear elasticity
of polymer gels. Second, we present a current state-of-the-
art unified formula for the linear elasticity of polymer gels
with various network topologies and densities. Third, using
this formula, we re-examine the past experimental results.
Finally, we present the summary and outlook of these
investigations.

Past experimental results of linear elasticity
in tetra gels

In this section, we briefly review, in chronological order,
our four experiments [1, 16–18] that investigated the linear
elasticity of polymer gels in the as-prepared state using tetra
gels (Fig. 1a). As shown in Fig. 1b, by tuning the molar
mass M and concentration c of precursor solutions, we
could independently and systematically control the network
density, i.e., the molar mass between the crosslinks M/2 and
the number density of crosslinks n= cNA/M in tetra gels.
Here, NA is the Avogadro constant, and c is defined as the
precursor weight divided by the solvent volume rather than
by the solution volume (see Sec. S1 in ref. [19]). In addi-
tion, we could control the network topology by tuning the
following two parameters: (i) the connectivity p (0 ≤ p ≤ 1),
i.e., the fraction of the reacted terminal functional
groups to all the terminal functional groups, and (ii) molar
mixing fraction of minor precursors to all precursors q as
[A]: [B]= q: 1− q for 0 ≤ q ≤ 1/2. Each of these experi-
ments [1, 16–18] involved different network topologies and
is summarized in Fig. 2a. Akagi et al. [16] investigated
networks with p≃ 1 (after completion of the reaction) and
q= 1/2 (stoichiometrically balanced mixing), as shown by
the orange circle in Fig. 2a. Nishi et al. [17] investigated
networks with q= 1/2, as shown by the blue arrow in
Fig. 2a, b. Yoshikawa et al. [18] compared networks with
q= 1/2 (blue arrow in 2a, b) and p= 2q (red filled circle in
Fig. 2a, c). Yoshikawa et al. [1] investigated networks with
q= 1/2 and p= 2q (red filled circle in Fig. 2a, c). We
describe the details of these studies in the following.

The first two studies (Akagi et al. [16] and Nishi et al.
[17]) investigated the applicability of the classical rubber
theories to polymer-gel elasticity. The representative mod-
els are the affine [8] and phantom [9] network models,
which predict the shear modulus G as,

Gaffine ¼ νnkBT ð1Þ

and

Gphantom ¼ ξnkBT ; ð2Þ
respectively. Here, n, kB, and T are the number density of
crosslinks, Boltzmann constant, and absolute temperature,
respectively. In Eqs. (1) and (2), ξ≡ ν− μ is the difference
between the number per precursor of the elastically effective
chains (ν) and the crosslinks (μ). We cannot experimentally
observe ν and ξ. However, p and q can be observed and
used to calculate the functions ν= ν(p, q), μ= μ(p, q), and
ξ= ξ(p, q) using the Bethe (i.e., tree) approximation
[18, 20, 21]. The difference between these models (Eqs.
(1) and (2)) is the way they address the fluctuation of
crosslinks. The affine network model assumes that the

Fig. 1 a Tetra gel synthesized by AB-type cross-end coupling of two
kinds of precursors of equal size in a water solvent.These precursors
are tetra-arm poly(ethylene glycol) (PEG) chains whose terminal
functional groups (A and B) are mutually reactive. b Control para-
meters of the network density of the tetra gel. In the polymer network
after completion of the chemical reaction, the molar mass of precursors
M corresponds to the molar mass between the crosslinks (M/2), and the
polymer concentration c represents the number density of crosslinks n
as n= cNA/M. Here, NA is the Avogadro constant
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crosslinks are fixed to the gel and that the deformation of a
chain follows macroscopic deformation. On the other hand,
the phantom network model assumes that the crosslinks
fluctuate and that the deformation of a chain is attenuated.

Akagi et al. [16] measured the c andM dependences of the
shear modulus G through stretching measurements of the
network with p≃ 1 and q= 1/2. (Strictly speaking, the con-
nectivity p of all the completely reacted gel samples was
almost constant, p≃ 0.9.) Figure 3a demonstrates that all the
data of the c/c* dependence of G/Gaffine with different M
collapse onto a single master curve. Here, c* is the overlap
concentration of precursors obtained by viscosity measure-
ment. However, in the original paper [16], the measurement

results (open gray symbols) were inaccurate for the following
two reasons: (i) a lower elastic modulus than expected was
observed because the tetra gels were prepared using pre-
cursors with the terminal functional groups (amine and N-
hydroxysuccinimide) that undergo hydrolysis over time; (ii)
the elastic modulus was measured by stretching measurement,
which causes a large error. To enable an accurate discussion,
Fig. 3a also shows the accurately remeasured data from ref.
[1] (filled black symbols), overcoming the above two pro-
blems; we (i) used tetra gels prepared using the precursors
with terminal functional groups (maleimide and thiol) that do
not cause hydrolysis and (ii) measured their elastic modulus
by dynamic rheological measurement. Here, the normal-
ization factors c*= c*(M) are different; the original paper
[16] used c*= 120, 75, 40, 15 g/L for M= 5, 10, 20, 40 kg/
mol, respectively, whereas ref. [1] used c*= 60, 40, 30 g/L
for M= 10, 20, 40 kg/mol, respectively. We note that the
following data (Fig. 3b, c below) were also accurately mea-
sured in the same way as ref. [1].

From our present understanding, Akagi et al. mis-
interpreted the results of Fig. 3a, i.e, a crossover from the
phantom network model to the affine network model occurs
in polymer gels. In Fig. 3a, the horizontal line showing G/
Gaffine= 0.5 can be regarded as the prediction of the phan-
tom network model because

Gphantom

Gaffine
¼ ξðp; 1=2Þ

νðp; 1=2Þ ’ 0:5; ð3Þ

for a tetra-arm network at p≃ 1. For c≃ c*, G agrees well
with Gphantom, and for c < c*, the values of G are smaller
than those of Gphantom. This is probably due to an increase in
ineffective connections for c < c* [18]. On the other hand,
for c > c*, G/Gaffine increases to approach 1 as c increases.
Previously, it was considered for conventional polymer gels
that an increase in G/Gaffine with an increase in c is due to
the presence of trapped entanglements. However, the stress-
elongation curve obeying the neo-Hookean model [22] and
the fracture energy obeying the Lake-Thomas model [23]
strongly suggest that this is not the case. Therefore, Akagi
et al. interpreted that the result in Fig. 3a indicates a
crossover from the phantom network model to the affine
network model with an increase in c. However, this
crossover is negated by the following p dependence results.

Nishi et al. [17] investigated p dependence of G in the
range c* < c for a dynamic process (DP) in which a network
is formed from two precursor solutions in a stoichiometric
ratio (q= 1/2), as shown by the blue arrow in Fig. 2b. Just
after mixing two precursor solutions, we measured the
time (t) courses of (i) G by rheological measurements and
(ii) p by ultraviolet-visible light spectroscopy. Combining
G=G(t) and p= p(t), we obtained G(p). Figure 3b shows
G(p)/G(1) as a function of p, where G(1) is the extrapolation
of G(p) at p= 1 based on the percolated network model

Fig. 2 a Control parameters of the network topology of the tetra gel.
The connectivity p increases monotonically with time and (ideally)
reaches p= 2q after completion of the reaction, where q is the molar
mixing fraction of the precursors of the minor group. b Dynamic
process (DP) of gelation, where two precursors are mixed in a stoi-
chiometrically balanced ratio (q= 1/2). c Static replicas (SR) of DP,
where two precursors are mixed in a stoichiometrically imbalanced
(and balanced) ratio (0 ≤ q ≤ 1/2). Here, the connectivity p after com-
pletion of the reaction is tuned as p= 2q
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[24]. Figure 3b demonstrates that all the data of the p
dependence of G(p)/G(1) with different c (in the range of
c* < c) collapse onto a single master curve, corresponding to
the prediction of the phantom network model under the
Bethe approximation, Gphantom(p)/Gphantom(1).

Yoshikawa et al. [18] compared two methodologies to
measure the connectivity (p) dependence of shear modulus
G in AB-type polymerization. The first is to measure G
during the dynamic process (DP) of gelation in a stoichio-
metric ratio (q= 1/2), as shown in Fig. 2b. The second is to
measure G of samples whose p after completion of the
reaction is tuned by mixing two precursors in stoichiome-
trically imbalanced (q < 1/2) and balanced (q= 1/2) ratios.
Here, assuming the complete reaction of a minor group, we
have p= 2q. This methodology can be regarded as a static
replica (SR) of the DP, as shown in Fig. 2c. In the former
(DP), we obtain continuous p dependence by monitoring the
time evolution of the same sample, whereas in the latter
(SR), we obtain discrete p dependence by using different
samples. The advantage of the SR over the DP is that the SR
can accurately measure various physical properties of
samples with different p over time because the system is
static. Figure 3c demonstrates that G=G(p) in the two
methodologies (DP and SR) agrees well in high p (i.e., p >
0.75) [in low p, close to the gelation point, the differences in
the structural parameters become more pronounced,
reflecting the differences in the topology of the DP (e.g.,
ξ(p, 1/2)) and SR (e.g., ξ(p, p/2)). See Fig. 4 in ref. [18]].
Note that these behaviors of the p-dependence of G in the

DP and SR are well reproduced by the phantom network
model under the Bethe approximation.

The above series of studies [16–18] are based on the
longstanding basic assumption that the polymer-gel elasti-
city is mainly determined by the entropy contribution.
Under this assumption, polymer-gel elasticity has been
evaluated with the classical rubber elasticity theories [8–10]
that predict that the shear modulus is proportional to the
absolute temperature (G ≃ aT), such as Eqs. (1) and (2). As
shown in Fig. 4a, many experimental studies on natural and
synthetic rubbers [25–28] have confirmed that G ≃ aT,
which means that G is mainly determined by the entropy
contribution. However, in the case of a polymer gel, the
results analyzed using such an assumption (G≃ aT) were
found to be inconsistent, even for measurements of G at
certain temperatures (room temperature). For example, the
results shown in Fig. 3b, c seem to be inconsistent with the
result of Fig. 3a; while Fig. 3a shows the crossover between
the phantom and affine network models depending on c,
Fig. 3b, c are consistent with the phantom network model
not depending on c. We cannot reconcile this inconsistency
as long as we assume G≃ aT.

Yoshikawa et al. [1] examined whether the premise of
G ≃ aT [e.g., Eqs. (1) and (2)] holds for polymer gels by
measuring the temperature (T) dependence of the shear
modulus G. Taking advantage of SR, we prepared various
gel samples with different network densities (various M
and c) and network topologies (various p). As shown in
Fig. 4b, we found that G= aT+ b with a significant

Fig. 3 Representative experimental results before the discovery of
negative energy elasticity. a Normalized shear modulus (G/Gaffine) as a
function of the overlap parameter (c/c*). The open gray symbols
represent the data from the original paper [16], which are inaccurate
due to the samples and measurement method. The filled black symbols
represent the data from ref. [1] that are more accurate in terms of the
samples and measurement method (see main text). Rhombuses, circles,
squares, and triangles represent M= 5, 10, 20, and 40 kg/mol,
respectively. The blue and red dashed lines show G/Gaffine= 0.5 (the
prediction of the phantom network model) and 1 (the prediction of the
affine network model), respectively. The overlap parameter in the
horizontal axis is converted from the polymer volume fraction ϕ/ϕ* (in
the original paper [16]) to concentration c/c*. b Normalized shear

modulus (G(p)/G(1)) as a function of the connectivity of the polymer
network (p). The polymer concentrations are c= 40, 60, 80, 100, and
120 g/L. The molar mass of the precursors is M= 20 kg/mol, and the
corresponding overlap concentration is 40 g/L. We calculate the
dashed lines from the affine and phantom network models with the
Bethe approximation. The data are taken from ref. [17]. c Shear
modulus (G) as a function of the connectivity of the polymer network
(p) in the dynamic gelation process (DP) and the static replica (SR).
The polymer concentrations are c= 30, 60, and 120 g/L, and the molar
mass of the precursors is M= 20 kg/mol. The data are taken from ref.
[18]. We note that the data in b and c were measured accurately in the
same way as ref. [1]
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negative value of b, contrary to the premise of the clas-
sical rubber elasticity theories. As we explain in the next
section, the first and second terms (aT and b) correspond
to entropy and internal energy contributions to G,
respectively. Thus, the negative value of b is interpreted
as “negative energy elasticity”. In ref. [1], we confirm the
above conclusions with >50 different network topologies
and densities (Fig. 5). In the next section, we explain the
negative energy elasticity based on thermodynamics and
provide a self-contained description of the unified for-
mula, which can explain all the experimental results of the
linear elasticity of PEG hydrogels with various network
topologies and densities [1, 16–18].

Unified formula for linear elasticity of
polymer gels

This section provides a self-contained summary of the state-
of-the-art understanding of the elasticity of isotropic,
incompressible gels in the as-prepared state, as obtained
using tetra gels with a homogenous network. In general, for
such homogeneous isotropic linear elastic materials, the
elastic properties are uniquely determined by the shear
modulus G, i.e., any of the other elastic moduli can be
calculated from G. For example, Young’s modulus E can be
calculated as E= 3G, and the bulk modulus K is considered
infinite (K≫G). Therefore, the elasticity of polymer gels in
the as-prepared state is entirely determined by G.

We consider the thermodynamics of the deformation of
polymer gels in the as-prepared state. The derivative of the
Helmholtz free energy F of an elastic body with an applied
shear strain γ is given by dF=−SdT− PdV+ Vσdγ at

temperature T and external pressure P [8, 29]. Here, S, V,
and σ are the entropy, volume, and shear stress, respec-
tively. Polymer gels are considered to be incompressible,
i.e., the relative volume change ΔV/V is negligible because
the bulk modulus (on the order of GPa) is significantly
larger than the shear modulus (on the order of kPa). (We
present detailed analysis of ΔV/V in Appendices B and C in
ref. [1].) Thus, we have

df ¼ �sdT þ σdγ; ð4Þ
where f≡ F/V and s≡ S/V are the Helmholtz free energy and
entropy densities, respectively.

In polymer physics, f of a polymer gel is often written in
the form of two separate contributions as [8]

f T ; γð Þ ¼ fmix Tð Þ þ f el T; γð Þ; ð5Þ

where fmix Tð Þ � f T ; 0ð Þ and f el T ; γð Þ � f T; γð Þ � fmix Tð Þ
are the mixing and elastic free energy densities,
respectively. Here, fmix is independent of the applied
shear strain γ because the volume V does not change with
deformation. We emphasize that Eq. (5) does not provide
any new information in the as-prepared state; it merely
defines fmix and fel. Equation (4) gives the shear stress as σ
(T, γ)= ∂f(T, γ)/∂γ in an isothermal process. Thus, the
shear modulus (GðTÞ � limγ!0∂σðT; γÞ=∂γ) is related to
the free energy as

G Tð Þ � lim
γ!0

∂2f

∂γ2
ðT ; γÞ ¼ lim

γ!0

∂2f el
∂γ2

ðT; γÞ: ð6Þ

Equation (6) indicates that fmix does not contribute to the
shear modulus G.

Fig. 4 a, b Decomposition of entropy and energy contributions to
shear modulus in a vulcanized natural rubber and b tetra gel. We
obtain the gray solid line from a least-squares fit to the temperature
dependence of the shear modulus G (black symbols). According to Eq.
(8), we have the entropy contribution GS (blue dashed line) and the
energy contribution GE (red dashed line), which corresponds to the
intercept of the gray solid line. The data are taken from refs. [26] and

[1] for a and b, respectively. Notably, the shear modulus of vulcanized
natural rubber is proportional to the absolute temperature (G≃ aT),
while that of the tetra gel is a linear function with a negative intercept
[G= a(T− T0)]. Here, the sample of tetra gel is synthesized by equal-
weight mixing of the two kinds of precursors whose molar massM and
concentration c are 20 kg/mol and 60 g/L, respectively

Linear elasticity of polymer gels in terms of negative energy elasticity 1297



Recently, we obtained a unified expression of the shear
modulus of tetra gels as a function of the microscopic
structure of the polymer network as [1]

GðT; c;M; p; qÞ ¼ aðc;M; p; qÞ T � T0
c

c�ðMÞ
� �� �

; ð7Þ

where c, M, p, and q are the polymer concentration, molar
mass of precursors, connectivity, and molar mixing fraction,
respectively (the definitions of p and q are given in the
previous section.) Figures 5 and 6a, b experimentally
validate Eq. (7) as follows. First, Fig. 5 shows that G is a
nearly linear function of T [i.e., G= aT+ b= a(T− T0),
where T0=−b/a] over the measured range (278 K ≤ T ≤
298 K). Second, Figs. 5 and 6a show that T0 does not
depend on the network topology (p and q) but depends on
the network density (c and M). Finally, Fig. 6b demon-
strates that the dependence of c and M on T0 is governed by
T0= T0(c/c*(M)). Here, c*(M) is the normalization factor

chosen to construct the master curve. We note that c*(M) is
in close agreement with the overlap concentration of the
precursors c�visðMÞ obtained by the viscosity measurement
[16].

The first and second terms in Eq. (7) correspond to the
entropy and energy elasticity, respectively. The Helm-
holtz free energy density satisfies f= e− Ts, where e is
the internal energy density and s is the entropy density.
Thus, on the basis of Eq. (6), we define the energy
contribution GE and the entropy contribution GS to the
shear modulus G= GE + GS as GE � limγ!0 ∂2e=∂γ2

� �
T ;V

and GS � �limγ!0T ∂2s=∂γ2
� �

T ;V
, respectively. Here,

GS and GE are defined under a constant-volume condi-
tion. According to the Maxwell relation ∂s=∂γð ÞT ;V ¼
� ∂σ=∂Tð Þγ;V , we have

GSðTÞ ¼ T
dG

dT
ðTÞ; ð8Þ

Fig. 5 Experimental evidence for the existence of negative energy
elasticity in a polymer gel. All panels show the temperature (T)
dependence of the shear modulus G. We obtain each gray line from a
least-square fit of each sample, which is characterized by the three
parameters of the precursors: the molar mass M, the concentration c

and the connectivity p. All gray lines that have the same M and c pass
through a vanishing temperature T0 on the T axis, which leads to Eq.
(7). The value of T0 in each graph is the average of the four samples
with different values of p, and the values in parentheses represent the
standard deviation. (Reprinted from ref. [1]; CC BY 4.0.)
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which enables us to determine the entropy and energy
contributions from the temperature (T) dependence
of the shear modulus G under a constant-volume condition
[8, 30, 31]. Substituting Eq. (7) into Eq. (8), we have
GS= aT and GE=G−GS=−aT0.

All measured samples shown in Fig. 5 have a significant
negative GE, which indicates that the undeformed state is
unstable in terms of the internal energy. As the (total) shear
moduli of stable materials are generally bound to be posi-
tive (G > 0), GS= aT must be larger than GEj j ¼ aT0.

We discuss Eq. (7) in the dilute, semidilute, and dense
regimes, respectively. In the dilute regime (c/c*(M) < 1),
Fig. 6b demonstrates the scaling law T0 � c=c�ðMÞð Þ�1=3,
which would be key to further understanding the micro-
scopic origin of negative energy elasticity in the future. We
present further discussion in ref. [1].

In the semidilute regime (1≲ c/c*(M)≲ 4) and suffi-
ciently high p (i.e., p > 0.75), our experiment [18, 1] shows
that the entropy contribution GS of the tetra gel is phe-
nomenologically well reproduced by a constant multiple of
the phantom network model [Eq. (2)] as GS≃ 2.4Gphantom≡
2.4ξnkBT, where n= n(c,M)= cNA/M is the number density
of the tetra-arm precursors. This implies that the prefactor a
(c,M, p, q) is approximately separable into the product of
the network density contribution (with control parameters c
and M, Fig. 1b) and the network topology contribution
(with control parameters p and q, Fig. 2a) as

aðc;M; p; qÞ ’ 2:4kBnðc;MÞξðp; qÞ: ð9Þ
We note that Eq. (9) is valid in the semidilute regime (1≲
c/c*(M)≲ 4) and sufficiently high p. In fact, a(c,M, p, q) is
a complex function in the dilute regime (c/c*(M) < 1) or low
p [see Fig. 5(d) in ref. [1]].

In the dense regime, Fig. 6c indicates that T0 decreases,
approaching nearly zero as ðc=c�Þ�1 ! 0, which means that

the solvent is removed. This result is consistent with
experimental results on vulcanized natural rubber and syn-
thetic rubbers without solvent; the absolute value of GE is
much smaller than the value of GS [25, 27, 28]. In other
words, this result suggests that the negative energy elasticity
in the polymer gels originates from the solvent.

Re-examination of past experimental results
by the unified formula

Based on the unified formula in Eq. (7) together with the
phenomenological expression of the prefactor in Eq. (9), we
re-examine past experimental results on polymer-gel elas-
ticity [16–18]. First, we consider Akagi et al. [16], which
investigated the network with p≃ 1 and q= 1/2, as shown
by the orange circle in Fig. 2a. Substituting Eq. (9) into Eq.
(7) and using Eq. (1), we have

G T ; c;M; 1; 12
� �

Gaffine T ; c;M; 1; 12
� � ’ 2:4ξ 1; 12

� �
T � T0

c
c�ðMÞ

� 	h i
ν 1; 12
� �

T

’ 1:2 1�
T0

c
c�ðMÞ

� 	
T

2
4

3
5:

ð10Þ

Here, we use ξ 1; 1=2ð Þ ¼ 1 and ν 1; 1=2ð Þ ¼ 2. Equation
(10) shows that G/Gaffine depends only on c/c* under
isothermal conditions (i.e., T is constant), which elucidates
Fig. 3a. We emphasize that the “crossover” in Fig. 3a
originates not from the phantom-affine crossover but from
the concentration dependence of the negative energy
elasticity (i.e., the dependence of T0 on c/c*).

Second, we consider the findings of Nishi et al. [17] on
the network with q= 1/2, as shown by the blue arrow in
Fig. 2a. As shown in Fig. 3b, Nishi et al. [17] considered G

Fig. 6 a The concentration (c) dependence of the vanishing tempera-
ture T0 that governs the energy contribution of polymer-gel elasticity.
The blue diamonds, red circles, and black squares represent M= 10,
20, and 40 kg/mol, respectively. Each symbol represents the average of
four samples taken from Fig. 5 (i.e., the data are taken from ref. [1]).

b, c The master curve of T0 obtained by normalizing the concentration.
Here, we set c*= 60, 40, and 30 g/L for M= 10, 20, and 40 kg/mol,
respectively. The green dashed curve shows the scaling law T0 �
ðc=c�Þ�1=3 in the dilute regime (c/c* < 1). As ðc=c�Þ�1 ! 0 (the dense
limit), T0 decreases, approaching nearly zero

Linear elasticity of polymer gels in terms of negative energy elasticity 1299



(p)/G(1), i.e., the shear modulus G(p) normalized by the
modulus of the network with p= 1 and q= 1/2. To gen-
eralize this, we consider G(p, q)/G(1, 1/2), i.e., the shear
modulus G(p, q) with general q normalized by the modulus
of the network with p= 1 and q= 1/2. Substituting Eq. (9)
into Eq. (7), we have

GðT; c;M; p; qÞ
GðT; c;M; 1; 1=2Þ ¼

aðc;M; p; qÞ
aðc;M; 1; 1=2Þ ’ ξðp; qÞ: ð11Þ

Equation (11) (with q= 1/2) fully explains the result of
Fig. 3b. The ratio G(T; c,M, p, q)/G(T; c,M, 1, 1/2) does not
depend on T, c, and M, and is explained by ξ(p, q),
corresponding to the prediction of the phantom network
model under the Bethe approximation. In the previous
section, we mentioned that the results of Akagi et al. [16]
and Nishi et al. [17] seem to be inconsistent with each other.
However, the unified formula [Eq. (7) with Eq. (9)] can
explain both in a consistent manner.

Third, we consider Yoshikawa et al. [18], which com-
pared the networks with q= 1/2 (blue arrow in Fig. 2a) and
p= 2q (red filled circle in Fig. 2a). The former is the DP, as
shown in Fig. 2b, and the latter is the SR, as shown in
Fig. 2c. [in ref. [18], we referred to the SR as imbalanced
mixing (IM)]. From the unified formula [Eq. (7) with Eq.
(9)], we derive that the connectivity (p) dependence of the
shear modulus of the DP (GDP(p)) and that of the SR (GSR

(p)) agree well in high p (i.e., p > 0.75), as shown in Fig. 3c.
As GDP(p)≡G(T; c,M, p, 1/2) and GSR(p)≡G(T; c,M, p,
p/2), we obtain

GSRðpÞ
GDPðpÞ ’

ξSRðpÞ
ξDPðpÞ

; ð12Þ

where

ξDPðpÞ � ξðp; 1=2Þ ¼ 2p� 1þ O 1� pð Þ2
� 	

ð13Þ

ξSRðpÞ � ξðp; p=2Þ ¼ 2p� 1þ O 1� pð Þ2
� 	

: ð14Þ

Here, we use the Bethe approximation [18]. From Eqs. (12),
(13), and (14), we have GDP(p)≃GSR(p) for p≃ 1.
The essence of this result relies on the fact that the prefactor
a(c,M, p, q) is separable as in Eq. (9), which leads to

GðT; c;M; p; qÞ
ξðp; qÞ ’ 2:4kBnðc;MÞ T � T0

c

c�ðMÞ
� �� �

:

ð15Þ

Thus, G/ξ is independent of network topology (p and q). In
fact, Yoshikawa et al. [18] experimentally demonstrated
that GDP(p)/ξDP(p)=GSR(p)/ξSR(p) holds and that GDP(p)/
ξDP(p) (and GSR(p)/ξSR(p)) does not depend on p in the
semidilute (1≲ c/c*(M)≲ 4) and sufficiently high p.

Summary and future prospects

In this article, we have described how past experimental
results [16–18] on the linear elasticity of polymer gels can be
successfully explained by considering negative energy elas-
ticity coexisting with entropy elasticity [1]. First, we have
reviewed the experimental researc [1, 16–18] on the linear
elasticity of polymer gel in the as-prepared state using tetra
gels. Each of these experiments involves a different network
topology (Fig. 2a). Figure 3 shows representative experi-
mental results. Second, we have provided the unified formula
in Eq. (7) for the linear elasticity of polymer gels, which has
been revealed in a series of studies [1, 16–18]. In addition, in
the semidilute (1≲ c/c*(M)≲ 4) and sufficiently high p, the
prefactor a(c,M, p, q) is separable as in Eq. (9). Finally, using
this unified formula (7) together with the phenomenological
expression of the prefactor in Eq. (9), we have explained the
past experimental results [16–18] and have reconciled the past
results that seem to be inconsistent with each othe [16, 17].

The discovery of negative energy elasticity [1] is one of
the most significant recent advances in the field of linear
elasticity of polymer gels. This negative energy elasticity,
which vanishes when the solvent is removed, is the critical
factor that differentiates gels from rubbers. The models of
classical rubber elasticity theories (such as the affine,
phantom, and junction affine network models) are inap-
plicable to polymer gels; the relative change in shear
modulus due to changes in temperature is several times
greater than predicted by these models. Thus, the negative
energy elasticity is of great practical importance because
polymer gels are used at various temperatures.

The elucidation of the governing law of the shear mod-
ulus is expected to improve our understanding of the static
and dynamic properties of swelling of polymer gels in
solvents. This is because the swelling pressure (Πtot) is
determined by the shear modulus and osmotic pressure as
Πtot=Πmix+Πel, where Πmix and Πel are the solvent-
polymer mixing (Πmix) and elastic (Πel) contributions,
respectively. As an example of the static properties of
swelling, we recently discovered the governing law of
osmotic pressure throughout the gelation process involving
both the sol and gel states [19]. Here, the osmotic pressure
was obtained by controlling the swelling pressure of gels
with an external solution and subtracting the elastic con-
tribution (Πel). As an example of the dynamic properties of
swelling, we demonstrated a significant dependence of the
elastic modulus on the collective diffusion coefficient of the
polymer networks [32, 33]. Accordingly, elasticity is the
basis of both static and dynamic properties of polymer gels,
prompting us to revisit past previous studies.

A complete understanding of the linear elasticity of
polymer gels is still elusive, and it is important to address
the following three points. First, the microscopic origin of
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the negative energy elasticity needs to be clarified. In ref.
[1], we inferred that the origin is the interaction between the
polymer and the solvent. However, because we performed
only macroscopic measurements [1, 16–18], we require
further investigations to clarify the microscopic origin. For
example, molecular-scale experiments (such as light scat-
tering and single-chain experiments [34, 35]) and numerical
simulations (such as molecular dynamics simulations)
will reveal the microscopic origin. A future theory that
explains the origin of negative energy elasticity from the
microscopic point of view should predict the vanishing
temperature T0 from the network structure. To construct
such a theory, the scaling law T0 � c=c�ðMÞð Þ�1=3 in the
dilute regime (c/c*(M) < 1) in Fig. 6b would play a key role.

Second, in connection with the prefactor a(c,M, p, q), we
need to revisit the classical rubber elasticity theories, which
are used to calculate the entropy elasticity of various net-
work models. The entropy elasticity (GS=G−GE), rather
than the shear modulus itself (G), may be explainded by
some classical rubber elasticity theory. However, according
to our experiments [1], GS is 2.4 times that of the phantom
network model, as in Eq. (9). The universality and meaning
of 2.4 is an important open question. For example, a
recently proposed theory [36] that predicts GS from the
number of topological loop defects does not appear to
explain our result because it predicts a lower GS than the
phantom network model.

Third, it is important to investigate whether our findings
extend to other polymer gels as well: (i) homogeneous gels
with other polymer-solvent systems, such as PEG-
acetonitrile [37], poly(acrylic acid) (PAA)-water [38],
poly(N-isopropylacrylamide) (PNIPA)-methanol [39], and
poly(n-butyl acrylate) (PBA)-N,N-dimethylformamide
(DMF) [40, 41] systems; (ii) gels with other network
structures, such as near-critical gels [42] and topological
gels [43]; and (iii) gels synthesized by other types of
polymerization, such as radical polymerization. We
emphasize that GS and GE are defined (and Eq. (8) holds)
under constant-volume conditions. Thus, it is necessary to
confirm that the effect of volume changes due to tempera-
ture changes is negligible. It is difficult for a small group to
experiment on all of these various polymer gels, and it is
essential to investigate the linear elasticity by various
groups.
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