Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Strategic design and synthesis of π-conjugated polymers suitable as intrinsically stretchable semiconducting materials

Abstract

Main-chain engineering and side-chain engineering approaches used to design and synthesize semiconducting polymers with intrinsic ductility and/or stretchability are introduced in this review, and recent progress in this area is discussed. Main-chain engineering includes (a) conjugation-break spacer (CBS), (b) ternary copolymer, and (c) block copolymer approaches, and side-chain engineering includes (d) Y-shaped side chain, (e) graft copolymer, and (f) cross-linking approaches. A summary of the results obtained by approaches (a)–(f) demonstrates that approaches (a) and (d) tend to provide high charge mobilities (>1 cm2V−1s−1) even at 100% tensile strain. On the other hand, the mechanical properties of films prepared by these methods remain poor, with a high elastic modulus in the range of >0.1 GPa, which causes poor film ductility and stretchability. In contrast, ductile and/or elastic semiconducting materials with extremely low elastic moduli of <0.01 GPa are obtained by approaches (c) and (f), which are used to prepare thermoplastic and cross-linked elastomeric materials, respectively. For semiconducting polymers to be promising candidates in applications such as wearable electronics, electronic skins, and bioelectronics, the trade-off relationship between the electronic and mechanical performance of semiconducting polymers must be prevented by further developing and combining versatile and efficient approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Someya T, Bao Z, Malliaras GG. The rise of plasticbioelectronics. Nature. 2016;540:379–85.

    Article  CAS  PubMed  Google Scholar 

  2. Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, et al. Epidermal electronics. Science. 2011;333:838–43.

    Article  CAS  PubMed  Google Scholar 

  3. Kaltenbrunner M, White MS, Głowacki ED, Sekitani T, Someya T, Sariciftci NS, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun. 2012;770:1–7.

    Google Scholar 

  4. Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev. 2017;117:6467–99.

    Article  CAS  PubMed  Google Scholar 

  5. Wang GJN, Gasperini A, Bao Z. Stretchable polymer semiconductors for plastic electronics. Adv Electron Mater. 2018;4:1700429.

    Article  CAS  Google Scholar 

  6. Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev. 2019;119:5461–533.

    Article  CAS  PubMed  Google Scholar 

  7. Someya T, Amagai M. Toward a new generation of smart skins. Nat Biotechnol. 2019;37:382–8.

    Article  CAS  PubMed  Google Scholar 

  8. Tran H, Feig VR, Liu K, Zheng Y, Bao Z. Polymer chemistries underpinning materials for skin-inspired electronics. Macromolecules. 2019;52:3965–74.

    Article  CAS  Google Scholar 

  9. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater. 2019;31:e1904765.

    Article  PubMed  CAS  Google Scholar 

  10. Ashizawa M, Zheng Y, Tran H, Bao Z. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog Polym Sci. 2020;100:101181.

    Article  CAS  Google Scholar 

  11. Chen AX, Kleinschmidt AT, Choudhary K, Lipomi DJ. Beyond stretchability: strength, toughness, and elastic range in semiconducting polymers. Chem Mater. 2020;32:7582–601.

    Article  CAS  Google Scholar 

  12. Xu J, Wang S, Wang GJN, Zhu C, Luo S, Jin L, et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science. 2017;355:59–64.

    Article  CAS  PubMed  Google Scholar 

  13. Mun J, Kang J, Zheng Y, Luo S, Wu HC, Matsuhisa N, et al. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv Mater. 2019;31:1903912.

    Article  CAS  Google Scholar 

  14. Zhao Y, Zhao X, Zang Y, Di C, Diao Y, Mei J. Conjugation-break spacers in semiconducting polymers: impact on polymer processability and charge transport properties. Macromolecules. 2015;48:2048–53.

    Article  CAS  Google Scholar 

  15. Melenbrink EL, Hilby KM, Alkhadra MA, Samal S, Lipomi DJ, Thompson BC. Influence of systematic incorporation of conjugation-break spacers into semi-random polymers on mechanical and electronic properties. ACS Appl Mater Interfac. 2018;10:32426–34.

    Article  CAS  Google Scholar 

  16. Melenbrink EL, Hilby KM, Choudhary K, Samal S, Kazerouni N, McConn JL, et al. Influence of acceptor side-chain length and conjugation-break spacer content on the mechanical and electronic properties of semi-random polymers. ACS Appl Polym Mater. 2019;1:1107–17.

    Article  CAS  Google Scholar 

  17. Mun J, Wang GJN, Oh JY, Katsumata T, Lee FL, Kang J, et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv Funct Mater. 2018;28:1804222.

    Article  CAS  Google Scholar 

  18. Galuska LA, McNutt WW, Qian Z, Zhang S, Weller DW, Dhakal S, et al. Impact of backbone rigidity on the thermomechanical properties of semiconducting polymers with conjugation break spacers. Macromolecules. 2020;53:6032–42.

    Article  CAS  Google Scholar 

  19. Oh JY, Rondeau-Gagné S, Chiu YC, Chortos A, Lissel F, Wang GJN, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature. 2016;539:411–5.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng Y, Ashizawa M, Zhang S, Kang J, Nikzad S, Yu Z, et al. Tuning the mechanical properties of a polymer semiconductor by modulating hydrogen bonding interactions. Chem Mater. 2020;32:5700–14.

    Article  CAS  Google Scholar 

  21. Printz AD, Savagatrup S, Burke DJ, Purdya TN, Lipomi DJ. Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Adv. 2014;4:13635–43.

    Article  CAS  Google Scholar 

  22. Lin YC, Huang YW, Hung CC, Chiang YC, Chen CK, Hsu LC, et al. Backbone engineering of diketopyrrolopyrrole-based conjugated polymers through random terpolymerization for improved mobility-stretchability property. ACS Appl Mater Interfac. 2020;12:50648–59.

    Article  CAS  Google Scholar 

  23. Müller C, Goffri S, Breiby DW, Andreasen JW, Chanzy HD, Janssen RAJ, et al. Stingelin-Stutzmann N. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv Funct Mater. 2007;17:2674–9.

    Article  CAS  Google Scholar 

  24. Wang JT, Takshima S, Wu HC, Shih CC, Isono T, Kakuchi T, et al. Stretchable conjugated rod–coil poly(3-hexylthiophene)-block-poly(butyl acrylate) thin films for field effect transistor applications. Macromolecules. 2017;50:1442–52.

    Article  CAS  Google Scholar 

  25. Li X, Wolanin PJ, MacFarlane LR, Harniman RL, Qian J, Gould OEC, et al. Uniform electroactive fibre-like micelle nanowires for organic electronics. Nat Commun. 2017;8:15909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goto E, Ochiai Y, Lo CT, Koganezawa T, Ueda M, Higashihara T. Synthesis of regioblock copolythiophene by Negishi catalyst-transfer polycondensation using tBu2Zn·2LiCl. Polym Chem. 2017;8:6143–9.

    Article  CAS  Google Scholar 

  27. Park H, Ma BS, Kim JS, Kim Y, Kim HJ, Kim D, et al. Regioregular-block-regiorandom poly(3-hexylthiophene) copolymers for mechanically robust and high-performance thin-film transistors. Macromolecules. 2019;52:7721–30.

    Article  CAS  Google Scholar 

  28. Sugiyama F, Kleinschmidt AT, Kayser LV, Alkhadra MA, Wan JM, Chiang AS, et al. Stretchable and degradable semiconducting block copolymers. Macromolecules. 2018;51:5944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng R, Pang B, Hu D, Chen M, Zhang G, Wang X, et al. An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. J Mater Chem C. 2015;3:3599–606.

    Article  CAS  Google Scholar 

  30. Miyane S, Mori H, Higashihara T. Synthesis and characterization of all-conjugated hard-soft-hard ABA triblock copolythiophene. Microsist Technol. 2016;22:3–10.

    Article  CAS  Google Scholar 

  31. Miyane S, Wen HF, Chen WC, Higashihara T. Synthesis of block copolymers comprised of poly(3-hexylthiophene) segment with trisiloxane side chains and their application to organic thin film transistor. J Polym Sci Part A: Polym Chem. 2018;56:1787–94.

    Article  CAS  Google Scholar 

  32. Higashihara T, Fukuta S, Ochiai Y, Sekine T, Chino K, Koganezawa T, et al. Synthesis and deformable hierarchical nanostructure of intrinsically stretchable ABA triblock copolymer comprised of poly(3-hexylthiophene) and polyisobutylene segments. ACS Appl Polym Mater. 2019;1:315–20.

    Article  CAS  Google Scholar 

  33. Higashihara T, Fukuta S, Koganezawa T, Chino K. Morphological study of blend thin films of poly(3-hexylthiophene)-block-polyisobutylene-block-poly(3-hexylthiophene):poly(3-hexylthiophene) and their application to photovoltaics. J Photopolym Sci Technol. 2019;32:741–6.

    Article  CAS  Google Scholar 

  34. Lei T, Dou JH, Pei J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv Mater. 2012;24:6457–61.

    Article  CAS  PubMed  Google Scholar 

  35. Wu HC, Hung CC, Hong CW, Sun HS, Wang JT, Yamashita G, et al. Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable field-effect transistors. Macromolecules. 2016;49:8540–8.

    Article  CAS  Google Scholar 

  36. Chiang YC, Wu HC, Wen HF, Hung CC, Hong CW, Kuo CC, et al. Tailoring carbosilane side chains toward intrinsically stretchable semiconducting polymers. Macromolecules. 2019;52:4396–404.

    Article  CAS  Google Scholar 

  37. Lin YC, Chen CK, Chiang YC, Hung CC, Fu MC, Inagaki S, et al. Study on intrinsic stretchability of diketopyrrolopyrrole-based π-conjugated copolymers with poly(acryl amide) side chains for organic field-effect transistors. ACS Appl Mater Interfac. 2020;12:33014–27.

    Article  CAS  Google Scholar 

  38. Wang GJN, Shaw L, Xu J, Kurosawa T, Schroeder BC, Oh JY, et al. Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv Funct Mater. 2016;26:7254–62.

    Article  CAS  Google Scholar 

  39. Wang GJN, Zheng Y, Zhang S, Kang J, Wu HC, Gasperini A, et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem Mater. 2019;31:6465–75.

    Article  CAS  Google Scholar 

  40. Wu HC, Lissel F, Wang GJN, Koshy DM, Nikzad S, Yan H, et al. Metal-ligand based mechanophores enhance both mechanical robustness and electronic performance of polymer semiconductors. Adv Funct Mater. 2021;31:2009201.

    Article  CAS  Google Scholar 

  41. Saito Y, Sakai Y, Higashihara T, Ueda M. Direct patterning of poly(3-hexylthiophene) amd its application to organic field-effect transistor. RSC Adv. 2012;2:1285–8.

    Article  CAS  Google Scholar 

  42. Miyane S, Higashihara T. Development of cross-linked polythiophene with oligoisobutylene side chains. The 67th SPSJ meeting. Prepr; 2018. No. 3D07.

Download references

Acknowledgements

TH thanks the Japan Society for the Promotion of Science (JSPS), KAKENHI (No. 26620172, 16H06049, 20J20461) and Tokuyama Science Foundation for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Higashihara.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higashihara, T. Strategic design and synthesis of π-conjugated polymers suitable as intrinsically stretchable semiconducting materials. Polym J 53, 1061–1071 (2021). https://doi.org/10.1038/s41428-021-00510-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00510-1

This article is cited by

Search

Quick links