Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks

Subjects

Abstract

We prepared moldable materials from lignosulfonate, an industrial lignin derivative, using a combination of ionic crosslinking between lignosulfonate and cationic polyelectrolytes and covalent crosslinking via the Maillard reaction. The mechanical properties of the lignosulfonate/cationic-polyelectrolyte/sugar complex at the optimal composition (stress at break: 55.1 MPa; Young’s modulus: 2791.8 MPa; strain at break: 3%) were comparable to those of poly(phenylene sulfide), which is used as a high-performance engineering plastic. In addition to the good mechanical properties, the lignosulfonate/cationic-polyelectrolyte/sugar complex was water-insoluble, in contrast with the high water solubility of the complex without the reducing sugar. Furthermore, the addition of a reducing sugar (fructose) to the complexes increased adhesion to a metal substrate. These improvements in the mechanical properties, water resistance, and adhesive strength of the lignosulfonate complex will expand the applications of lignosulfonate under high mechanical stress conditions and in water and biobased adhesives.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrady AL. The plastic in microplastics: a review. Mar Pollut Bull. 2017;119:12–22.

    Article  CAS  Google Scholar 

  2. Akdogan Z, Guven B. Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ Pollut. 2019;254:113011.

    Article  CAS  Google Scholar 

  3. Dilkes-Hoffman LS, Pratt S, Lant PA, Laycock B. The role of biodegradable plastic in solving plastic solid waste accumulation. In: Al-Salem SM, editor. Plastics to energy. New York: William Andrew Publishing; 2019. p. 469–505.

  4. Reichert CL, Bugnicourt E, Coltelli MB, Cinelli P, Lazzeri A, Canesi I, et al. Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers. 2020;12:1558

    Article  CAS  Google Scholar 

  5. Reglero Ruiz JA, Trigo-López M, García FC, García JM. Functional aromatic polyamides. Polymers. 2017;9:414.

    Article  Google Scholar 

  6. Pilato L. Phenolic resins: a century of progress. New York: Springer; 2010.

  7. Ko HU, Zhai L, Park JH, Lee JY, Kim D, Kim J. Poly(vinyl alcohol)–lignin blended resin for cellulose-based composites. J Appl Polym Sci. 2018;135:46655.

    Article  Google Scholar 

  8. Shikinaka K, Nakamura M, Otsuka Y. Strong UV absorption by nanoparticulated lignin in polymer films with reinforcement of mechanical properties. Polymer. 2020;190:122254.

    Article  CAS  Google Scholar 

  9. Kargarzadeh H, Galeski A, Pawlak A. PBAT green composites: effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties. Polymer. 2020;203:122748.

    Article  CAS  Google Scholar 

  10. Matsuoka T, Nonaka H. Wet extrusion of wood powder using a cellulose derivative. Jpn TAPPI J. 2020;74:516–24.

    Article  Google Scholar 

  11. Shen X, Berton P, Shamshina JL, Rogers RD. Preparation and comparison of bulk and membrane hydrogels based on Kraft-and ionic-liquid-isolated lignins. Green Chem. 2016;18:5607–20.

    Article  CAS  Google Scholar 

  12. Li H, Sun JT, Wang C, Liu S, Yuan D, Zhou X, et al. High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustain Chem Eng. 2017;5:7942–9.

    Article  CAS  Google Scholar 

  13. Dehne L, Vila C, Saake B, Schwarz KU. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends. J Appl Polym Sci. 2017;134:44582.

    Article  Google Scholar 

  14. Dick TA, Couve J, Gimello O, Mas A, Robin JJ. Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly (L-lactide) composites. Polymer. 2017;118:280–96.

    Article  Google Scholar 

  15. Ushimaru K, Morita T, Fukuoka T. Moldable and humidity-responsive self-healable complex from lignosulfonate and cationic polyelectrolyte. ACS Sustain Chem Eng. 2018;6:14831–7.

    Article  CAS  Google Scholar 

  16. Ushimaru K, Hamano Y, Morita T, Fukuoka T. Moldable material from ε-poly-l-lysine and lignosulfonate: mechanical and self-healing properties of a bio-based polyelectrolyte complex. ACS Omega. 2019;4:9756–62.

    Article  CAS  Google Scholar 

  17. Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53:10316–29.

    Article  CAS  Google Scholar 

  18. Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33:499–512.

    Article  CAS  Google Scholar 

  19. Ushimaru K, Morita T, Fukuoka T. Bio-based, flexible, and tough material derived from ε-poly-l-lysine and fructose via the Maillard reaction. ACS Omega. 2020;5:22793–9.

    Article  CAS  Google Scholar 

  20. Ushimaru K, Morita T, Fukuoka T. A bio-based adhesive composed of polyelectrolyte complexes of lignosulfonate and cationic polyelectrolytes. J Wood Chem Technol. 2020;40:172–7.

    Article  CAS  Google Scholar 

  21. Zhang ZH, Zeng XA, Brennan CS, Ma H, Aadil RM. Preparation and characterisation of novelty food preservatives by Maillard reaction between ε-polylysine and reducing sugars. Int J Food Sci Technol. 2019;54:1824–35.

    Article  CAS  Google Scholar 

  22. Lay M, Thajudin NLN, Hamid ZAA, Rusli A, Abdullah MK, Shuib RK. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos B Eng. 2019;176:107341.

    Article  CAS  Google Scholar 

  23. Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213:222–4.

    Article  CAS  Google Scholar 

  24. Suarez G, Rajaram RAMA, Oronsky AL, Gawinowicz MA. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem. 1989;264:3674–9.

    Article  CAS  Google Scholar 

  25. Kim C, Yoshie N. Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers? Polym J. 2018;50:919–29.

    Article  CAS  Google Scholar 

  26. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.

    Article  CAS  Google Scholar 

  27. Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–90.

    Article  CAS  Google Scholar 

  28. Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C. Toughening elastomers with sacrificial bonds and watching them break. Science. 2014;344:186–9.

    Article  CAS  Google Scholar 

  29. Neal JA, Mozhdehi D, Guan Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J Am Chem Soc. 2015;137:4846–50.

    Article  CAS  Google Scholar 

  30. Nakajima T. Generalization of the sacrificial bond principle for gel and elastomer toughening. Polym J. 2017;49:477–85.

    Article  CAS  Google Scholar 

  31. Yamini G, Shakeri A, Zohuriaan-Mehr MJ, Kabiri K. Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: from natural waste to value-added bio-additive. J CO2 Util. 2018;24:50–8.

  32. Szabó G, Romhányi V, Kun D, Renner K, Pukánszky B. Competitive interactions in aromatic polymer/lignosulfonate blends. ACS Sustain Chem Eng. 2017;5:410–9.

    Article  Google Scholar 

  33. Lee SI, Chun BC. Effect of EGMA content on the tensile and impact properties of poly (phenylene sulfide)/EGMA blends. Polymer. 1998;39:6441–7.

    Article  CAS  Google Scholar 

  34. Yang Y, Duan H, Zhang S, Niu P, Zhang G, Long S, et al. Morphology control of nanofillers in poly (phenylene sulfide): a novel method to realize the exfoliation of nanoclay by SiO2 via melt shear flow. Compos Sci Technol. 2013;75:28–34.

    Article  CAS  Google Scholar 

  35. Tao X, Nonaka H. Wet extrusion molding of wood powder with hydroxy-propylmethyl cellulose and with citric acid as a crosslinking agent. BioResources. 2021;16:2314–25.

    Article  CAS  Google Scholar 

  36. Hasegawa D, Teramoto Y, Nishio Y. Molecular complex of lignosulfonic acid/poly (vinyl pyridine) via ionic interaction: characterization of chemical composition and application to material surface modifications. J Wood Sci. 2008;54:143–52.

    Article  CAS  Google Scholar 

  37. Wei C, Zhu X, Peng H, Chen J, Zhang F, Zhao Q. Facile preparation of lignin-based underwater adhesives with improved performances. ACS Sustain Chem Eng. 2019;7:4508–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to JNC Corporation for providing ε-PL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokuma Fukuoka.

Ethics declarations

Conflict of interest

This work was supported by JSPS KAKENHI (grant number JP19K15645). The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41428_2021_501_MOESM1_ESM.doc

Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushimaru, K., Morita, T., Watanabe, R. et al. Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks. Polym J 53, 1037–1045 (2021). https://doi.org/10.1038/s41428-021-00501-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00501-2

Search

Quick links