Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Practical synthesis of dendritic hyperbranched polymers by reversible deactivation radical polymerization

Abstract

Recent developments in the one-step synthesis of structurally controlled hyperbranched polymers by radical polymerization in terms of molecular weight, dispersity, number of branching points, branching density, and number of chain-end groups are reported. The structural character of HB-polyacrylates and HB-polystyrenes synthesized by organotellurium-mediated radical polymerization (TERP) resembles that of dendrimers and dendrons, which, although enabling complete control over branched structures, requires tedious stepwise synthesis. Successful control is realized by a new molecular design for the monomer inducing the branching structure, in which the reactivity of the dormant group changes from inactive to active upon the reaction and incorporation of the monomer into the polymer backbone. The principle of the monomer design and the scope and limitation of the polymerization method are described here.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Scheme 5
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Elias H-G. Macromolecules. Vol. 3, Physical Structures and Properties. Weinheim: Wiley-VCH; 2008.

    Google Scholar 

  2. Matyjaszewski K, Gnanou Y, Leibler L, editors. Macromolecular engineering Vol. 3, structure-property correlation and characterization techniques. Weinheim: Wiley-VCH; 2007.

  3. van Krevelen DW, te Nijenhuis K. Properties of polymers. 4th ed. Amsterdam; Elsevier; 2009.

  4. Elias H-G. Macromolecules. Vol. 1, Chemical Structures and Syntheses. Weinheim: Wiley-VCH; 2005.

    Google Scholar 

  5. Matyjaszewski K, Gnanou Y, Leibler L, editors. Macromolecular engineering. Vol. 1, Synthetic techniques. Weinheim: Wiley-VCH; 2007.

  6. Matyjaszewski K, Gnanou Y, Leibler L, editors. Macromolecular engineering. Vol. 2, Elements of macromolecular structural control. Weinheim: Wiley-VCH; 2007.

  7. Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F, editors. Complex macromolecular architectures. Synthesis, characterization, and self-assembly. Singapore: John Wiley & Sons (Asia) Pte Ltd; 2011.

  8. Yan D, Gao C, Frey H, editors. Hyperbranched polymers. Synthesis, properties, and applications. New Jersey: John Wiley & Sons, Inc.; 2011.

  9. Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Polymers with complex architecture by living anionic polymerization. Chem Rev. 2001;101:3747–92.

    CAS  PubMed  Article  Google Scholar 

  10. Jikei M, Kakimoto M. Hyperbranched polymers: a promising new class of materials. Prog Polym Sci. 2001;26:1233–85.

    CAS  Article  Google Scholar 

  11. Gao C, Yan D. Hyperbranched polymers: from synthesis to applications. Prog Polym Sci. 2004;29:183–275.

    CAS  Article  Google Scholar 

  12. Voit BI, Lederer A. Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev. 2009;109:5924–73.

    CAS  PubMed  Article  Google Scholar 

  13. Astruc D, Chardac F. Dendritic catalysts and dendrimers in catalysis. Chem Rev. 2001;101:2991–3023.

    CAS  PubMed  Article  Google Scholar 

  14. Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev. 2004;33:43–63.

    CAS  PubMed  Article  Google Scholar 

  15. Lee CC, MacKay JA, Frechet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.

    CAS  PubMed  Article  Google Scholar 

  16. Yamamoto K, Imaoka T, Chun W-J, Enoki O, Katoh H, Takenaga M, et al. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem. 2009;1:397–402.

    CAS  PubMed  Article  Google Scholar 

  17. Wang X, Gao H. Recent progress on hyperbranched polymers synthesized via radical-based self-condensing vinyl polymerization. Polymers. 2017;9:188.

    PubMed Central  Article  CAS  Google Scholar 

  18. Grayson SM, Frechet JMJ. Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev. 2001;101:3819–67.

    CAS  PubMed  Article  Google Scholar 

  19. Tomalia DA, Christensen JB, Boas U. Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future. Cambridge: Cambridge University Press; 2012.

    Book  Google Scholar 

  20. Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev. 1999;99:1665–88.

    CAS  PubMed  Article  Google Scholar 

  21. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers—starburst-dendritic macromolecules. Polym J. 1985;17:117–32.

    CAS  Article  Google Scholar 

  22. Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112:7638–47.

    CAS  Article  Google Scholar 

  23. Flory PJ. Molecular size distribution in three dimensional polymers. 6. Branched polymers containing A-R-Bf-1 type units. J Am Chem Soc. 1952;74:2718–23.

    CAS  Article  Google Scholar 

  24. Kim YH, Webster OW. Water-soluble hyperbranched polyphynylene—a unimolecular micelle. J Am Chem Soc. 1990;112:4592–3.

    CAS  Article  Google Scholar 

  25. Frechet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc MR, Grubbs RB. Self-condensing vinyl polymerization—an approach to dendritic materials. Science. 1995;269:1080–3.

    CAS  PubMed  Article  Google Scholar 

  26. Hawker CJ, Frechet JMJ, Grubbs RB, Dao J. Preparation of hyperbranched and star polymers by a living, self-condensing free-radical polymerization. J Am Chem Soc. 1995;117:10763–4.

    CAS  Article  Google Scholar 

  27. Gaynor SG, Edelman S, Matyjaszewski K. Synthesis of branched and hyperbranched polystyrenes. Macromolecules. 1996;29:1079–81.

    CAS  Article  Google Scholar 

  28. Sakamoto K, Aimiya T, Kira M. Preparation of hyperbranched polymethacrylates by self-condensing group transfer polymerization. Chem Lett. 1997;26:1245–6.

  29. Simon PFW, Radke W, Müller AHE. Hyperbranched methacrylates by self-condensing group transfer polymerization. Macromol Rapid Commun. 1997;18:865–73.

    CAS  Article  Google Scholar 

  30. Alfurhood JA, Bachler PR, Sumerlin BS. Hyperbranched polymers via RAFT self-condensing vinyl polymerization. Polym Chem. 2016;7:3361–9.

    CAS  Article  Google Scholar 

  31. Hanselmann R, Holter D, Frey H. Hyperbranched polymers prepared via the core-dilution/slow addition technique: computer simulation of molecular weight distribution and degree of branching. Macromolecules. 1998;31:3790–801.

    CAS  Article  Google Scholar 

  32. M K, Gao H. New method to access hyperbranched polymers with uniform structure via one-pot polymerization of inimer in microemulsion. J Am Chem Soc. 2012;134:15680–3.

    Article  CAS  Google Scholar 

  33. Ohta Y, Fujii S, Yokoyama A, Furuyama T, Uchiyama M, Yokozawa T. Synthesis of well-defined hyperbranched polyamides by condensation polymerization of AB(2) monomer through changed substituent effects. Angew Chem. 2009;48:5942–5.

    CAS  Article  Google Scholar 

  34. Ohta Y, Sakurai K, Matsuda J, Yokozawa T. Chain-growth condensation polymerization of 5-aminoisophthalic acid triethylene glycol ester to afford well-defined, water-soluble, thermoresponsive hyperbranched polyamides. Polymer. 2016;101:305–10.

    CAS  Article  Google Scholar 

  35. Shi Y, Graff RW, Cao X, Wang X, Gao H. Chain-growth click polymerization of AB(2) monomers for the formation of hyperbranched polymers with low polydispersities in a one-pot process. Angew Chem. 2015;54:7631–5.

    CAS  Article  Google Scholar 

  36. Cao X, Shi Y, Gao H. A novel chain-growth CuAAC polymerization: one-pot synthesis of dendritic hyperbranched polymers with well-defined structures. Synlett. 2017;28:391–6.

    CAS  Article  Google Scholar 

  37. Matyjaszewski K, Möller M, editors. Polymer science: a comprehensive reference. Vol. 3, Chain polymerization of vinyl monomers. Elsevier; Amsterdam; 2012.

  38. Chatgilialoglu C, Studer A, editors. Encyclopedia of radicals in chemistry, biology and materials. Vol. 4, polymers & materials. John Wiley & Sons; 2012.

  39. Yamago S, Iida K, Yoshida J. Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J Am Chem Soc. 2002;124:2874–5.

    CAS  PubMed  Article  Google Scholar 

  40. Yamago S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem Rev. 2009;109:5051–68.

    CAS  PubMed  Article  Google Scholar 

  41. Yamago S. Photoactivation of organotellurium compounds in precision polymer synthesis: controlled radical polymerization and radical coupling reactions. Bull Chem Soc Jpn. 2020;93:287–98.

    CAS  Article  Google Scholar 

  42. Yamago S, Lida K, Yoshida J. Tailored synthesis of structurally defined polymers by organotellurium-mediated living radical polymerization (TERP): synthesis of poly(meth)acrylate derivatives and their Di- and triblock copolymers. J Am Chem Soc. 2002;124:13666–7.

    CAS  PubMed  Article  Google Scholar 

  43. Yusa S, Yamago S, Sugahara M, Morikawa S, Yamamoto T, Morishima Y. Thermo-responsive diblock copolymers of poly(N-isopropylacrylamide) and poly(N-vinyl-2-pyrroridone) synthesized via organotellurium-mediated controlled radical polymerization (TERP). Macromolecules. 2006;40:5907–15.

    Article  CAS  Google Scholar 

  44. Mishima E, Yamago S. Controlled random and alternating copolymerization of (Meth)acrylates, acrylonitrile, and (Meth)acrylamides with vinyl ethers by organotellurium-, organostibine-, and organobismuthine-mediated living radical polymerization reactions. J Polym Sci A Polym Chem. 2012;50:2254–64.

    CAS  Article  Google Scholar 

  45. Mishima E, Tamura T, Yamago S. Controlled copolymerization of acrylate and 6-methyleneundecane by organotellurium-mediated living radical polymerization (TERP). Macromolecules. 2012;45:2989–94.

    CAS  Article  Google Scholar 

  46. Mishima E, Tamura T, Yamago S. Controlled copolymerization of 1-octene and (Meth)acrylates via organotellurium-mediated living radical polymerization (TERP). Macromolecules. 2012;45:8998–9003.

    CAS  Article  Google Scholar 

  47. Lu Y, Nemoto T, Tosaka M, Yamago S. Synthesis of structurally controlled hyperbranched polymers using a monomer having hierarchical reactivity. Nat Commun. 2017;8:1863.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Lu Y, Yamago S. Synthesis of structurally controlled, highly branched polymethacrylates by radical polymerization through the design of a monomer having hierarchical reactivity. Macromolecules. 2020;53:3209–16.

    CAS  Article  Google Scholar 

  49. Lu Y, Yamago S. One-step synthesis of dendritic highly branched polystyrenes by organotellurium-mediated copolymerization of styrene and a Dienyl Telluride Monomer. Angew Chem. 2019;58:3952–6.

    CAS  Article  Google Scholar 

  50. Li F, Cao M, Feng Y, Liang R, Fu X, Zhong M. Site-specifically initiated controlled/living branching radical polymerization: a synthetic route toward hierarchically branched architectures. J Am Chem Soc. 2019;141:794–9.

    CAS  PubMed  Article  Google Scholar 

  51. Fradet A, Chen J, Hellwich K-H, Horie K, Kahovec J, Mormann W, et al. Nomenclature and terminology for dendrimers with regular dendrons and for hyperbranched polymers (IUPAC Recommendations 2017). Pure Appl Chem. 2019;91:523–61.

    CAS  Article  Google Scholar 

  52. Goto A, Kwak Y, Fukuda T, Yamago S, Iida K, Nakajima M, et al. Mechanism-based invention of high-speed living radical polymerization using organotellurium compounds and azo-initiators. J Am Chem Soc. 2003;125:8720–1.

    CAS  PubMed  Article  Google Scholar 

  53. Fan W, Nakamura Y, Yamago S. Synthesis of multivalent organotellurium chain-transfer agents by post-modification and their applications in living radical polymerization. Chemistry. 2016;22:17004–8.

    Google Scholar 

  54. Yamago S, Ukai Y, Matsumoto A, Nakamura Y. Organotellurium-mediated controlled/living radical polymerization initiated by direct C−Te bond photolysis. J Am Chem Soc. 2009;131:2100–1.

    CAS  PubMed  Article  Google Scholar 

  55. Yamada T, Mishima E, Yamago S. Phenyltellanyl triflate (PhTeOTf) as a powerful tellurophilic activator in the Friedel–Crafts reaction. Chem Lett. 2008;37:650–1.

    CAS  Article  Google Scholar 

  56. Kayahara E, Yamago S. In: Matyjaszewski K, Sumerlin BS, Tsarevsky NV, editors. Progress in controlled radical polymerization: materials and applications Vol. 1101 ACS symposium series. American Chemical Society; Washington, DC; 2012.

  57. Nakamura Y, Arima T, Yamago S. Modular synthesis of mid-chain-functionalized polymers by photoinduced diene- and styrene-assisted radical coupling reaction of polymer-end radicals. Macromolecules. 2014;47:582–8.

    CAS  Article  Google Scholar 

  58. Willemse RXE, van Herk AM, Panchenko E, Junkers T, Buback M. PLP-ESR monitoring of midehain radicals in n-butyl acrylate polymerization. Macromolecules. 2005;38:5098–103.

    CAS  Article  Google Scholar 

  59. Nakamura Y, Yamago S. Termination mechanism in the radical polymerization of methyl methacrylate and styrene determined by the reaction of structurally well-defined polymer end radicals. Macromolecules. 2015;48:6450–6.

    CAS  Article  Google Scholar 

  60. Nakamura Y, Ogihara T, Hatano S, Abe M, Yamago S. Control of the termination mechanism in radical polymerization by viscosity: selective disproportionation in viscous media. Chemistry. 2017;23:1299–305.

    CAS  PubMed  Article  Google Scholar 

  61. Nakamura Y, Lee R, Coote ML, Yamago S. Termination mechanism of the radical polymerization of acrylates. Macromol Rapid Commun. 2016;37:506–13.

    CAS  PubMed  Article  Google Scholar 

  62. Farhangi S, Casier R, Li L, Thoma JL, Duhamel J. Characterization of the long-range internal dynamics of pyrene-labeled macromolecules by pyrene excimer fluorescence. Macromolecules. 2016;49:9597–604.

    CAS  Article  Google Scholar 

  63. Yamago S, Iida K, Nakajima M, Yoshida J. Practical protocols for organotellurium-mediated living radical polymerization by in situ generated initiators from AIBN and ditellurides. Macromolecules. 2003;36:3793–6.

    CAS  Article  Google Scholar 

  64. Kayahara E, Yamago S, Kwak Y, Goto A, Fukuda T. Optimization of organotellurium transfer agents for highly controlled living radical polymerization. Macromolecules. 2008;41:527–9.

    CAS  Article  Google Scholar 

  65. Ridgeway ME, Lubeck M, Jordens J, Mann M, Park MA. Trapped ion mobility spectrometry: a short reviewMark. Int J Mass Spectrom. 2018;425:22–35.

    CAS  Article  Google Scholar 

  66. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH. Ion mobility-mass spectrometry. J Mass Spectrom. 2008;43:1–22.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The author deeply appreciates the intellectual and physical contributions of collaborators and coworkers, especially Drs. Atanu Kotal (now at JIS University, India), Shenyong Ren (now at the China University of Petroleum), and Yangtian Lu (Kyoto University). Drs. Atanu Kotal and Shenyong Ren pioneered this work, and Dr. Yangtian Lu realized the idea and helped prepare the paper. Financial support from the Japan Society for the Promotion of Science KAKENHI (16H06352) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Yamago.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamago, S. Practical synthesis of dendritic hyperbranched polymers by reversible deactivation radical polymerization. Polym J 53, 847–864 (2021). https://doi.org/10.1038/s41428-021-00487-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00487-x

Search

Quick links