Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of polyarylates and aliphatic polyesters by divalent acyl-1,2,4-triazole: a route to metal-free synthesis at low temperature

Abstract

Aromatic, semiaromatic, and aliphatic polyesters were synthesized at moderate temperatures (25–80 °C) by the polymerization of divalent acyl-1,2,4-triazoles using 4-(dimethylamino)pyridine as a catalyst. The monomers were prepared from divalent acyl chloride in high yields, although some of them required that toluene and pyridine be used as solvents due to their high crystallinity. Melt polymerization in diphenyl ether was effective in affording semiaromatic and aliphatic polyesters. However, this method was not suitable for aromatic polyesters, as the reaction system became heterogeneous at 80 °C. Nevertheless, solution and interfacial polymerization reactions were effective in obtaining aromatic polyesters. The novel monomers provided polyester synthesis at moderate temperature without the use of any metal catalyst or halide monomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Turner, SR, Liu Y. Chemistry and technology of step-growth polyesters. in Schmidt HW, Ueda M, editors. Polymer science: a comprehensive reference, volume 5, Polycondensation: Elsevier; 2012, p. 311–331.

  2. Bier G. Polyarylates (polyesters from aromatic dicarboxylic acids and bisphenols). Polymer. 1974;15:527–35.

    Article  CAS  Google Scholar 

  3. Kohsaka Y, Nagai K, Controls and effects of monomer junctions and sequences in curable and degradable polyarylate containing acrylate moieties. Macromol Rapid Commun. 2021, in press. https://doi.org/10.1002/marc.202000570.

  4. Hayashi S, Narita A, Wasano T, Tachibana Y, Kasuya K. Synthesis and cross-linking behavior of biobased polyesters composed of bi(furfuryl alcohol). Eur Polym J. 2019;121:109333.

    Article  CAS  Google Scholar 

  5. Tachibana Y, Yamahata M, Kimura S, Kasuya K. Synthesis, physical properties, and biodegradability of biobased poly(butylene succinate-co-butylene oxabicyclate). ACS Sustain Chem Eng. 2018;6:10806–14.

    Article  CAS  Google Scholar 

  6. Tachibana Y, Yamahata M, Ichihara H, Kasuya K. Biodegradability of polyesters comprising a bio-based monomer derived from furfural. Polym Degrad Stabil. 2017;146:121–5.

    Article  CAS  Google Scholar 

  7. Tachibana Y, Kimura S, Kasuya K. Synthesis and verification of biobased terephthalic acid from furfural. Sci Rep. 2015;5:8249.

    Article  Google Scholar 

  8. Miyagawa N, Ogura T, Okano K, Matsumoto T, Nishino T, Mori A. Preparation of furan dimer-based biopolyester showing high melting points. Chem Lett. 2017;46:1535–8.

    Article  CAS  Google Scholar 

  9. Kainulainen TP, Sirviö JA, Sethi J, Hukka TI, Heiskanen JP. UV-blocking synthetic biopolymer from biomass-based bifuran diester and ethylene glycol. Macromolecules. 2018;51:1822–9.

    Article  CAS  Google Scholar 

  10. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem. 2015;6:5961–83.

    Article  CAS  Google Scholar 

  11. Lavilla C, Alla A, Antxon M, de I, Muñoz-Guerra S. High Tg bio-based aliphatic polyesters from bicyclic D-mannitol. Biomacromolecules. 2013;14:781–93.

    Article  CAS  Google Scholar 

  12. Ishii M, Okazaki M, Shibasaki Y, Ueda M, Teranishi T. Convenient synthesis of aliphatic polyesters by distannoxane-catalyzed polycondensation. Biomacromolecules. 2001;2:1267–70.

    Article  CAS  Google Scholar 

  13. Kricheldolf HR, Behnken G, Schwarz G. Telechelic polyesters of ethane diol and adipic or sebacic acid by means of bismuth carboxylates as non-toxic catalysts. Polymer. 2005;46:11219–24.

    Article  Google Scholar 

  14. Apicella B, Di Serio M, Fiocca L, Santacesaria RPE. Kinetic and catalytic aspects of the formation of poly(ethylene terephthalate) (PET) investigated with model molecules. J Appl Polym Sci. 1998;69:2423–33.

    Article  CAS  Google Scholar 

  15. Xiao B, Wang L, Mei R, Wang G. PET synthesis in the presence of new aluminum catalysts. J Polym Res. 2011;18:2221–7.

    Article  CAS  Google Scholar 

  16. Lin Q, Gu Y, Chen D. Attapulgite‐supported aluminum oxide hydroxide catalyst for synthesis of poly(ethylene terephthalate). J Appl Polym Sci. 2013;129:2571–9.

    Article  CAS  Google Scholar 

  17. Rüdel H. Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf. 2003;56:180–9.

    Article  Google Scholar 

  18. Buzin R, Lahcini M, Schwarz G, Kricheldorf HR. Aliphatic polyesters by bismuth triflate-catalyzed polycondensations of dicarboxylic acids and aliphatic diols. Macromolecules. 2008;41:228491–5.

    Article  Google Scholar 

  19. Moyori T, Tang T, Takasu A. Dehydration polycondensation of dicarboxylic acids and diols using sublimating strong brønsted acids. Biomacromolecules. 2012;13:1240–3.

    Article  CAS  Google Scholar 

  20. Takasu A, Makino T, Yamada S. Polyester synthesis at moderate temperatures via the direct polycondensation of dicarboxylic acids and diols catalyzed by rare-earth perfluoroalkanesulfonates and bis(perfluoroalkanesulfonyl)imides. Macromolecules. 2010;43:144–9.

    Article  CAS  Google Scholar 

  21. Kricheldorf HR, Rabenstein M, Maskos M, Schmidt M. Macrocycles. 15. the role of cyclization in kinetically controlled polycondensations. 1. polyester syntheses. Macromolecules. 2001;34:713–22.

    Article  CAS  Google Scholar 

  22. Kohsaka Y, Homma K, Sugiyama S, Kimura Y. Esterification with aromatic acyl-1,2,4-triazole catalyzed by weak base at the rate comparable to acyl chloride. Chem Lett. 2018;47:100–2.

    Article  CAS  Google Scholar 

  23. Kohsaka Y, Homma K, Mori I, Sugiyama S, Kimura Y. Bifunctional acyl-1,2,4-triazole: an alternative monomer of dicarbonyl chloride for metal- and halogen-free polyester synthesis. Chem Lett. 2018;47:221–4.

    Article  CAS  Google Scholar 

  24. Maglio G, Marchetta C, Botta A, Palumbo R, Pracella M. Synthesis and characterization of aliphatic unsaturated polyesters from trans-4-octene-1,8-dioic and trans-3-hexene-1,6-dioic acid. Eur Polym J. 1979;15:695–9.

    Article  CAS  Google Scholar 

  25. Kohsaka Y, Miyazaki T, Hagiwara K. Conjugate substitution and addition of α-substituted acrylate: a highly efficient, facile, convenient, and versatile approach to fabricate degradable polymers. Polym Chem. 2018;9:1610–7.

    Article  CAS  Google Scholar 

  26. Kohsaka Y, Yamashita M, Matsuhashi Y, Yamasita S. Synthesis of poly(conjugated ester)s by ring-opening polymerization of cyclic hemiacetal ester bearing acryl skeleton. Eur Polym J. 2019;120:109185.

    Article  CAS  Google Scholar 

  27. Robert T, Friebel S. Itaconic acid-a versatile building block for renewable polyesters with enhanced functionality. Green Chem. 2016;18:2922–34.

    Article  CAS  Google Scholar 

  28. Makiguchi K, Satoh T, Kakuchi T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules. 2011;44:1999–2005.

    Article  CAS  Google Scholar 

  29. Makiguchi K, Ogasawara Y, Kikuchi S, Satoh T, Kakuchi T. Diphenyl phosphate as an efficient acidic organocatalyst for controlled/living ring-opening polymerization of trimethylene carbonates leading to block, end-functionalized, and macrocyclic polycarbonates. Macromolecules. 2013;46:1772–82.

    Article  CAS  Google Scholar 

  30. Akitsuki T, Komori C, Japan Kokai Tokkyo Koho (2013) JP A 2013-040258; Japan Tokkyo Koho (2015) JP B2 5713399.

Download references

Acknowledgements

8d was a gift from Osaka Gas Chemicals Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kohsaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohsaka, Y., Mori, I., Homma, K. et al. Synthesis of polyarylates and aliphatic polyesters by divalent acyl-1,2,4-triazole: a route to metal-free synthesis at low temperature. Polym J 53, 887–893 (2021). https://doi.org/10.1038/s41428-021-00484-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00484-0

Search

Quick links