Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Water-soluble polymer micelles formed from amphiphilic diblock copolymers bearing pendant phosphorylcholine and methoxyethyl groups

Abstract

Amphiphilic diblock copolymers (M98En) composed of hydrophilic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC, M) and hydrophobic poly(2-methoxyethyl acrylate) (PMEA, E) were prepared via controlled radical polymerization. The degree of polymerization (DP) of the PMPC block was 98, and the DP values of the PMEA block (=n) were 95 and 314. In water, M98En formed micelles with hydrophobic PMEA cores and hydrophilic PMPC shells. The size, density, and aggregation number of M98E314 were larger than those of M98E95 because the hydrophobic interactions became stronger with increasing PMEA block length. A hydrophobic anticancer agent, i.e., doxorubicin, was encapsulated into the core of the polymer micelles to assess the potential of these micelles as carriers in a drug delivery system. Micelles formed from M98En did not interact with proteins in the aqueous solution because the micelle surfaces were covered with biocompatible PMPC shells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Won YY, Davis HT, Bates FS. Giant wormlike rubber micelles. Science. 1999;283:960–3.

    Article  CAS  PubMed  Google Scholar 

  2. Maskos M, Harris JR. Double-shell vesicles, strings of vesicles and filaments found in crosslinked micellar solutions of poly(1,2-butadiene)-block-poly(ethylene oxide) diblock copolymers. Macromol Rapid Commun. 2001;22:271–3.

    Article  CAS  Google Scholar 

  3. Blanazs A, Armes SP, Ryan AJ. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol Rapid Commun. 2009;30:267–77.

    Article  CAS  PubMed  Google Scholar 

  4. Quémener D, Deratani A, Lecommandoux S. Dynamic assembly of block-copolymers. Top Curr Chem. 2012;322:165–92.

    Article  PubMed  Google Scholar 

  5. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  CAS  PubMed  Google Scholar 

  6. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92:1343–55.

    Article  CAS  PubMed  Google Scholar 

  7. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64:1020–37.

    Article  CAS  PubMed  Google Scholar 

  8. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;16:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–23.

    Article  CAS  PubMed  Google Scholar 

  10. Hussein YHA, Youssry M. Polymeric micelles of biodegradable diblock copolymers: enhanced encapsulation of hydrophobic drugs. Materials. 2018;11:688.

    Article  PubMed Central  Google Scholar 

  11. Kwon GS, Naito M, Kataoka K, Yokoyama M, Sakurai Y, Okano T. Block copolymer micelles as vehicles for hydrophobic drugs. Colloids Surf B. 1994;2:429–34.

    Article  CAS  Google Scholar 

  12. Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release. 1997;48:195–201.

    Article  CAS  Google Scholar 

  13. Zhang X, Jackson JK, Burt HM. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm. 1996;132:195–206.

    Article  CAS  Google Scholar 

  14. Yamamoto Y, Yasugi K, Harada A, Nagasaki Y, Kataoka K. Temperature-related change in the properties relevant to drug delivery of poly(ethylene glycol)–poly(D,L-lactide) block copolymer micelles in aqueous milieu. J Control Release. 2002;82:359–71.

    Article  CAS  PubMed  Google Scholar 

  15. Ferruti P, Penco M, D’Addato P, Ranucci E, Deghenghi R. Synthesis and properties of novel block copolymers containing poly(lactic-glycolic acid) and poly(ethyleneglycol) segments. Biomaterials. 1995;16:1423–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kim SY, Shin IG, Lee YM, Cho CS, Sung YK. Methoxy poly(ethylene glycol) and ε-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Control Release. 1998;51:13–22.

    Article  CAS  PubMed  Google Scholar 

  17. Shin ILG, Kim SY, Lee YM, Cho CS, Sung YK. Methoxy poly(ethylene glycol)/ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin. I. Preparation and characterization. J Control Release. 1998;51:1–11.

    Article  CAS  PubMed  Google Scholar 

  18. Liu G, Luo Q, Gao H, Chen Y, Wei X, Dai H, et al. Cell membrane-inspired polymeric micelles as carriers for drug delivery. Biomater Sci. 2015;3:490–9.

    Article  CAS  PubMed  Google Scholar 

  19. Laverman P, Carstens MG, Boerman OC, Dams ET, Oyen WJ, van Rooijen N, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther. 2001;298:607–12.

    CAS  PubMed  Google Scholar 

  20. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112:15–25.

    Article  CAS  PubMed  Google Scholar 

  21. Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm. 2008;354:56–62.

    Article  CAS  PubMed  Google Scholar 

  22. Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, et al. PEGylated liposomes: immunological responses. Sci. Technol Adv Mater. 2019;20:710–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moghimi SM, Andersen AJ, Hashemi SH, Lettiero B, Ahmadvand D, Hunter AC, et al. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release. 2010;146:175–81.

    Article  CAS  PubMed  Google Scholar 

  24. Giacomelli C, Le Men L, Borsali R, Lai-Kee-Him J, Brisson A, Armes SP, et al. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromolecules. 2006;7:817–28.

    Article  CAS  PubMed  Google Scholar 

  25. Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir. 2019;35:1778–87.

    Article  CAS  PubMed  Google Scholar 

  26. Lewis AL. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B. 2000;18:261–75.

    Article  CAS  Google Scholar 

  27. Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J. 1992;24:1259–69.

    Article  CAS  Google Scholar 

  28. Jeon SI, Andrade JD. Protein―surface interactions in the presence of polyethylene oxide: II. Effect of protein size. J Colloid Interface Sci. 1991;142:159–66.

    Article  CAS  Google Scholar 

  29. He Y, Hower J, Chen S, Bernards MT, Chang Y, Jiang S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir. 2008;24:10358–64.

    Article  CAS  PubMed  Google Scholar 

  30. Ma B, Zhuang W, Liu G, Wang Y. A biomimetic and pH-sensitive polymeric micelle as carrier for paclitaxel delivery. Regen Biomater. 2018;5:15–24.

    Article  CAS  PubMed  Google Scholar 

  31. Ishihara K. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Sci Technol Adv Mater. 2000;1:131–8.

    Article  CAS  Google Scholar 

  32. Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res. Part A. 2019;107A:933–43.

    Article  Google Scholar 

  33. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3:829–36.

    Article  CAS  PubMed  Google Scholar 

  34. Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent bio-interfaces. Sci. Technol Adv Mater. 2012;13:064101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madsen J, Armes SP, Bertal K, MacNeil S, Lewis AL. Preparation and aqueous solution properties of thermoresponsive biocompatible AB diblock copolymers. Biomacromolecules. 2009;10:1875–87.

    Article  CAS  PubMed  Google Scholar 

  36. Yusa S, Fukuda K, Yamamoto T, Ishihara K, Morishima Y. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules. 2005;6:663–70.

    Article  CAS  PubMed  Google Scholar 

  37. Mu M, Konno T, Inoue Y, Ishihara K. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architecture. Colloids Surf B Biointerfaces. 2017;158:249–56.

    Article  CAS  PubMed  Google Scholar 

  38. Javakhishvili I, Røn T, Jankova K, Hvilsted S, Lee S. Synthesis, characterization, and aqueous lubricating properties of amphiphilic graft copolymers comprising 2-methoxyethyl acrylate. Macromolecules. 2014;47:2019–29.

    Article  CAS  Google Scholar 

  39. Tanaka M, Mochizuki A. Clarification of the blood compatibility mechanism by controlling the water structure at the blood–poly(meth)acrylate interface. J Biomater Sci Polym Ed. 2012;21:1849–63.

    Article  Google Scholar 

  40. Ueda T, Murakami D, Tanaka M. Effect of interfacial structure based on grafting density of poly(2-methoxyethyl acrylate) on blood compatibility. Colloids Surf B. 2021;199:111517.

    Article  CAS  Google Scholar 

  41. Tanaka M, Motomura T, Kawada M, Anzai T, Kasori Y, Shiroya T, et al. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—relationship between protein adsorption and platelet adhesion on pmea surface. Biomaterials. 2000;21:1471–81.

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka M, Mochizuki A, Ishii N, Motomura T, Hatakeyama T. Study of blood compatibility with poly(2-methoxyethyl acrylate). Relationship between water structure and platelet compatibility in poly(2-methoxyethyl acrylate-co-2-hydroxyethyl methacrylate). Biomacromolecules. 2002;3:36–41.

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka M, Sato K, Kitakami E, Kobayashi S, Hoshiba T, Fukushima K. Design of biocompatible and biodegradable polymers based on intermediate water concept. Polym J. 2015;47:114–21.

    Article  CAS  Google Scholar 

  44. Tanaka M, Hayashi T, Morita S. The roles of water molecules at the biointerface of medical polymers. Polym J. 2013;45:701–10.

    Article  CAS  Google Scholar 

  45. Yusa S, Yokoyama Y, Morishima Y. Synthesis of oppositely charged block copolymers of poly(ethylene glycol) via reversible addition−fragmentation chain transfer radical polymerization and characterization of their polyion complex micelles in water. Macromolecules. 2009;42:376–83.

    Article  CAS  Google Scholar 

  46. Chiefari J, Chong BYK, Ercole F, Krstina J, Jeffery J, Le TPT, et al. Living free-radical polymerization by reversible addition−fragmentation chain transfer: The RAFT process. Macromolecules. 1998;31:5559–62.

    Article  CAS  Google Scholar 

  47. Zhang G, Liu L, Zhao Y, Ning F, Jiang M, Wu C. Self-assembly of carboxylated poly(styrene-b-ethylene-co-butylene-b-styrene) triblock copolymer chains in water via a microphase inversion. Macromolecules. 2000;33:6340–3.

    Article  CAS  Google Scholar 

  48. Hatano I, Mochizuki K, Sumi T, Koga K. Hydrophobic polymer chain in water that undergoes a coil-to-globule transition near room temperature. J Phys Chem. B. 2016;120:12127–34.

    Article  CAS  PubMed  Google Scholar 

  49. Orofino TA, Flory PJ. Relationship of the second virial coefficient to polymer chain dimensions and interaction parameters. J Chem Phys. 1957;26:1067–76.

    Article  Google Scholar 

  50. Overath P, Trouble H. Phase transitions in cells, membranes, and lipids of escherichia coli. Detection by fluorescent probes. Biochemistry. 1973;12:2625–34.

    Article  CAS  PubMed  Google Scholar 

  51. Brito BMM, Vaz WLC. Determination of the critical micelle concentration of surfactants using the fluorescent probe N-phenyl-1-naphthylamine. Anal Biochem. 1986;152:250–5.

    Article  CAS  PubMed  Google Scholar 

  52. Qin Y, Peng X. Synthesis of biocompatible cholesteryl−carboxymethyl xylan micelles for tumor-targeting intracellular DOX delivery. ACS Biomater Sci. Eng. 2020;6:1582–9.

    Article  CAS  PubMed  Google Scholar 

  53. Yang S, Ren Z, Chen M, Wang Y, You B, Chen W, et al. Nucleolin-targeting AS1411-aptamer-modified graft polymeric micelle with dual pH/redox sensitivity designed To enhance tumor therapy through the codelivery of doxorubicin/TLR4 siRNA and suppression of invasion. Mol Pharm. 2018;15:314–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by a Grant-in-Aid for Scientific Research (17H03071) from the Japan Society for the Promotion of Science (JSPS), JSPS Bilateral Joint Research Projects (JPJSBP120203509), and the Cooperative Research Program of “Network Joint Research Center for Materials and Devices (20204034).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Yusa.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, A., Nguyen, T.L., Mizoue, Y. et al. Water-soluble polymer micelles formed from amphiphilic diblock copolymers bearing pendant phosphorylcholine and methoxyethyl groups. Polym J 53, 805–814 (2021). https://doi.org/10.1038/s41428-021-00482-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00482-2

This article is cited by

Search

Quick links