Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Synthesis of functional and architectural polyethers via the anionic ring-opening polymerization of epoxide monomers using a phosphazene base catalyst

Abstract

This focused review provides an overview of our recent work and related research regarding the precise anionic ring-opening polymerization (AROP) of substituted epoxides, including alkylene oxides, glycidyl ethers, and glycidyl amines, using t-Bu-P4 as the phosphazene base catalyst to produce functional polyethers, such as homopolymers, block copolymers (BCPs), and topologically unique polymers. First, the fundamental aspects and applicable monomer scope of t-Bu-P4-catalyzed AROP are discussed. Subsequently, the applications of well-defined polyethers prepared via t-Bu-P4-catalyzed AROP to develop functional materials, such as thermoresponsive polymers and Li+ conducting polymers, are discussed. Finally, the utility of t-Bu-P4-catalyzed AROP in the precise synthesis of star-shaped, cyclic, and multicyclic polymers is presented. Overall, we intend to illustrate the exploitable utility of the present polymerization system for fundamental and advanced polymer research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mark, HF, Bikales, NM, Overberger, CG, Menges, G, Kroschwitz, JI, editors. Encyclopedia of polymer science and engineering; New York: John Wiley & Sons, Inc; 1985. 6.

  2. Chattopadhyay DK, Raju KVSN. Structural engineering of polyurethane coatings forhigh performance applications. Prog Polym Sci. 2007;32:352–418.

    Article  CAS  Google Scholar 

  3. Petrović Z, Ferguson J. Polyurethane elastomers. Prog Polym Sci. 1991;16:695–836.

    Article  Google Scholar 

  4. Schmolka IR. A review of block polymer surfactants. J Am Oil Chem Soc. 1977;54:110–116.

    Article  CAS  Google Scholar 

  5. Gupta S, Tyagi R, Parmar VS, Sharma SK, Haag R. Polyether based amphiphiles for delivery of active components. Polymer. 2012;53:3053–3078.

    Article  CAS  Google Scholar 

  6. Booth C, Attwood D. Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution. Macromol Rapid Commun. 2000;21:501–527.

    Article  CAS  Google Scholar 

  7. Penczek S, Cypryk M, Duda A, Kubisa P, Słomkowski S. Living ring-opening polymerizations of heterocyclic monomers. Prog Polym Sci. 2007;32:247–282.

    Article  CAS  Google Scholar 

  8. Price C. Polyethers. Acc. Acc Chem Res. 1974;7:294–301.

    Article  CAS  Google Scholar 

  9. Brocas A-L, Mantzaridis C, Tunc D, Carlotti S. Polyether synthesis: from activated or metal-free anionic ring-opening polymerization of epoxides to functionalization. Prog Polym Sci. 2013;38:845–873.

    Article  CAS  Google Scholar 

  10. Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, et al. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem Rev. 2016;116:2170–243.

    Article  CAS  PubMed  Google Scholar 

  11. Ding J, Heatley F, Price C, Booth C. Use of crown ether in the anionic polymerization of propylene oxide—2. Molecular weight and molecular weight distribution. Eur Polym J. 1991;27:895–9.

    Article  CAS  Google Scholar 

  12. Billouard C, Carlotti S, Desbois P, Deffieux A. “Controlled” high-speed anionic polymerization of propylene oxide initiated by alkali metal alkoxide/trialkylaluminum systems. Macromolecules. 2004;37:4038–43.

    Article  CAS  Google Scholar 

  13. Raynaud J, Ottou WN, Gnanou Y, Taton D. Metal-free and solvent-free access to α,ω-heterodifunctionalized poly(propylene oxide)s by N-heterocyclic carbene-induced ring opening polymerization. Chem Commun. 2010;46:3203–5.

    Article  CAS  Google Scholar 

  14. Song Q, Zhao J, Zhang G, Taton D, Peruch F, Carlotti S. N-Heterocyclic carbene/Lewis acid-mediated ring-opening polymerization of propylene oxide. Part 1: Triisobutylaluminum as an efficient controlling agent. Eur Polym J. 2020;134:109819.

    Article  CAS  Google Scholar 

  15. Song Q, Zhao J, Zhang G, Taton D, Peruch F, Carlotti S. N-Heterocyclic carbene/Lewis acid-mediated ring-opening polymerization of propylene oxide. Part 2: toward dihydroxytelechelic polyethers using triethylborane. Eur Polym J. 2020;134:109839.

    Article  CAS  Google Scholar 

  16. Misaka H, Tamura E, Makiguchi K, Kamoshida K, Sakai R, Satoh T, et al. Synthesis of end-functionalized polyethers by phosphazene base-catalyzed ring-opening polymerization of 1,2-butylene oxide and glycidyl ether. J Polym Sci Part A: Polym Chem. 2012;50:1941–52.

    Article  CAS  Google Scholar 

  17. Schwesinger R, Schlemper H, Hasenfratz C, Willaredt J, Dambacher T, Breuer T, et al. Extremely strong, uncharged auxiliary bases. Monomeric and polymer-supported polyaminophosphazenes (P2-P5). Liebigs. Ann. 1996; 1055–81.

  18. Esswein B, Möller M. Polymerization of ethylene oxide with alkyllithium compounds and the phosphazene base “tBu-P4”. Angew Chem Int Ed. 1996;35:623–5.

    Article  CAS  Google Scholar 

  19. Eßwein B, Steidl NM, Möller M. Anionic polymerization of oxirane in the presence of the polyiminophosphazene base t-Bu-P4. Macromol Rapid Commun. 1996;17:143–8.

    Article  Google Scholar 

  20. Eßwein B, Molenberg A, Möller M. Use of polyiminophosphazene bases for ring‐opening polymerizations. Macromol Symp. 1996;107:331–40.

    Article  Google Scholar 

  21. Puchelle V, Du H, Illy N, Guégan P. Polymerization of epoxide monomers promoted by tBuP4 phosphazene base: a comparative study of kinetic behavior. Polym Chem. 2020;11:3585–92.

    Article  CAS  Google Scholar 

  22. Misaka H, Sakai R, Satoh T, Kakuchi T. Synthesis of high molecular weight and end-functionalized poly(styrene oxide) by living ring-opening polymerization of styrene oxide using the alcohol/phosphazene base initiating system. Macromolecules. 2011;44:9099–107.

    Article  CAS  Google Scholar 

  23. Isono T, Asai S, Satoh Y, Takaoka T, Tajima K, Kakuchi T, et al. Controlled/living ring-opening polymerization of glycidylamine derivatives using t‑Bu‑P4/alcohol initiating system leading to polyethers with pendant primary, secondary, and tertiary amino groups. Macromolecules. 2015;48:3217–29.

    Article  CAS  Google Scholar 

  24. Chiang Y-C, Kobayashi S, Isono T, Shih C-C, Shingu T, Hung C-C, et al. Effect of a conjugated/elastic block sequence on the morphology and electronic properties of polythiophene based stretchable block copolymers. Polym Chem. 2019;10:5452–64.

    Article  CAS  Google Scholar 

  25. Hans M, Keul H, Moeller M. Chain transfer reactions limit the molecular weight of polyglycidol prepared via alkali metal based initiating systems. Polymer. 2009;50:1103–8.

    Article  CAS  Google Scholar 

  26. Hwang E, Kim K, Lee CG, Kwon T-H, Lee S-H, Min SK, et al. Tailorable degradation of pH-responsive all-polyether micelles: unveiling the role of monomer structure and hydrophilic−hydrophobic balance. Macromolecules. 2019;52:5884–93.

    Article  CAS  Google Scholar 

  27. Song J, Hwang E, Lee Y, Palanikumar L, Choi S-H, Ryu J-H, et al. Tailorable degradation of pH-responsive all polyether micelles via copolymerisation with varying acetal groups. Polym Chem. 2019;10:582–92.

    Article  CAS  Google Scholar 

  28. Isono T, Satoh Y, Miyachi K, Chen Y, Sato S-i, Tajima K, et al. Synthesis of linear, cyclic, figure-eight-shaped, and tadpole-shaped amphiphilic block copolyethers via t‑Bu‑P4‑catalyzed ring-opening polymerization of hydrophilic and hydrophobic glycidyl ethers. Macromolecules. 2014;47:2853–63.

    Article  CAS  Google Scholar 

  29. Dentzer L, Bray C, Noinville S, Illy N, Guégan P. Phosphazene-promoted metal-free ring-opening polymerization of 1,2-epoxybutane initiated by secondary amides. Macromolecules. 2015;48:7755–64.

    Article  CAS  Google Scholar 

  30. Zhao J, Pahovnik D, Gnanou Y, Hadjichristidis N. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid. Macromolecules. 2014;47:1693–8.

    Article  CAS  Google Scholar 

  31. Isono T, Lee H, Miyachi K, Satoh Y, Kakuchi T, Ree M, et al. Synthesis, thermal properties, and morphologies of amphiphilic brush block copolymers with tacticity-controlled polyether main chain. Macromolecules. 2018;51:2939–50.

    Article  CAS  Google Scholar 

  32. Kwon W, Rho Y, Kamoshida K, Kwon KH, Jeong YC, Kim J, et al. Well-defined functional linear aliphatic diblock copolyethers: a versatile linear aliphatic polyether platform for selective functionalizations and various nanostructures. Adv Funct Mater. 2012;22:5194–5208.

    Article  CAS  Google Scholar 

  33. Lee J, Han S, Kim M, Kim B-S. Anionic polymerization of azidoalkyl glycidyl ethers and post- polymerization modification. Macromolecules. 2020;53:355–66.

    Article  CAS  Google Scholar 

  34. Wilms V, Frey H. Aminofunctional polyethers: smart materials for applications in solution and on surfaces. Polym Int. 2013;62:849–59.

    Article  CAS  Google Scholar 

  35. Herzberger J, Kurzbach D, Werre M, Fischer K, Hinderberger D, Frey H. Stimuli-responsive tertiary amine functional PEGs based on N,N‑dialkylglycidylamines. Macromolecules. 2014;47:7679–90.

    Article  CAS  Google Scholar 

  36. Reuss VS, Were M, Frey H. Thermoresponsive copolymers of ethylene oxide and N,N-diethyl glycidyl amine: polyether polyelectrolytes and PEGylated gold nanoparticle formation. Macromol Rapid Commun. 2012;33:1556–61.

    Article  CAS  PubMed  Google Scholar 

  37. Reuss VS, Obermeier B, Dinels C, Frey H. N,N-Diallylglycidylamine: a key monomer for amino-functional poly(ethylene glycol) architectures. Macromolecules. 2012;45:4581–9.

    Article  CAS  Google Scholar 

  38. Obermeier B, Wurm F, Frey H. Amino functional poly(ethylene glycol) copolymers via protected amino glycidol. Macromolecules. 2010;43:2244–51.

    Article  CAS  Google Scholar 

  39. Isono T, Miyachi K, Satoh Y, Sato S-i, Kakuchi T, Satoh T. Design and synthesis of thermoresponsive aliphatic polyethers with a tunable phase transition temperature. Polym Chem. 2017;8:5698–707.

    Article  CAS  Google Scholar 

  40. Kim B, Chae C-G, Satoh Y, Isono T, Ahn M-K, Min C-M. et al. Synthesis of Hard−Soft−Hard Triblock Copolymers, Poly(2-naphthyl glycidyl ether)-block-poly[2-(2-(2-methoxyethoxy)ethoxy)ethyl glycidyl ether]-block-poly(2-naphthyl glycidyl ether), for Solid Electrolytes. Macromolecules. 2018;51:2293–301.

    Article  CAS  Google Scholar 

  41. Shin E, Lim C, Kang UJ, Kim M, Park J, Kim D, et al. Mussel-inspired copolyether loop with superior antifouling behavior. Macromolecules. 2020;53:3551–62.

    Article  CAS  Google Scholar 

  42. Ree JB, Satoh Y, Jin KS, Isono T, Kim WJ, Kakuchi T, et al. Well-defined and stable nanomicelles self-assembled from brush cyclic and tadpole copolymer amphiphiles: a versatile smart carrier platform. NPG Asia Mater. 2017;9:e453.

    Article  CAS  Google Scholar 

  43. Ree JB, Lee J, Satoh Y, Kwon K, Isono T, Satoh T, et al. A comparative study of dynamic light and X-ray scatterings on micelles of topological polymer amphiphiles. Polymers. 2018;10:1347.

    Article  PubMed Central  Google Scholar 

  44. Aoki S, Koide A, Imabayashi S-i, Watanabe M. Novel thermosensitive polyethers prepared by anionic ring-opening polymerization of glycidyl ether derivatives. Chem Lett. 2002;31:1128–9.

    Article  Google Scholar 

  45. Ray B, Okamoto Y, Kamigaito M, Sawamoto M, Seno K-i, Kanaoka S, et al. Effect of tacticity of poly(N-isopropylacrylamide) on the phase separation temperature of its aqueous solutions. Polym J. 2005;37:234–7.

    Article  CAS  Google Scholar 

  46. Jung S, Kwon W, Wi D, Kim J, Ree JB, Kim YY, et al. Hierarchical self-assembly and digital memory characteristics of crystalline−amorphous brush diblock copolymers bearing electroactive moieties. Macromolecules. 2016;49:1369–82.

    Article  CAS  Google Scholar 

  47. Isono T, Kamoshida K, Satoh Y, Takaoka T, Sato S-i, Satoh T, et al. Synthesis of star- and figure-eight-shaped polyethers by t‑Bu‑P4‑catalyzed ring-opening polymerization of butylene oxide. Macromolecules. 2013;46:3841–9.

    Article  CAS  Google Scholar 

  48. Satoh T, Miyachi K, Matsuno H, Isono T, Tajima K, Kakuchi T, et al. Synthesis of well-defined amphiphilic star-block and miktoarm star copolyethers via t‑Bu‑P4‑catalyzed ring-opening polymerization of glycidyl ethers. Macromolecules. 2016;49:499–509.

    Article  CAS  Google Scholar 

  49. Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N. 50th anniversary perspective: polymers with complex architectures. Macromolecules. 2017;50:1253–90.

    Article  CAS  Google Scholar 

  50. Yamamoto T, Tezuka Y. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses. Soft Matter. 2015;11:7458–68.

    Article  CAS  PubMed  Google Scholar 

  51. Haque FM, Grayson SM. The synthesis, properties and potential applications of cyclic polymers. Nat Chem. 2020;12:433–44.

    Article  CAS  PubMed  Google Scholar 

  52. Laurent, BA; Grayson, SM. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 2009;38:2202–13.

  53. Tu X-Y, Liu M-Z, Wei H. Recent progress on cyclic polymers: synthesis, bioproperties, and biomedical applications. J Polym Sci Part A: Polym Chem. 2016;54:1447–58.

    Article  CAS  Google Scholar 

  54. Laurent BA, Grayson SM. An efficient route to well-defined macrocyclic polymers via “click” cyclization. J Am Chem Soc. 2006;128:4238–9.

    Article  CAS  PubMed  Google Scholar 

  55. Satoh Y, Matsuno H, Yamamot T, Tajima K, Isono T, Satoh T. Synthesis of well-defined three- and four-armed cage-shaped polymers via “topological conversion” from trefoil- and quatrefoil-shaped polymers. Macromolecules. 2017;50:97–106.

    Article  CAS  Google Scholar 

  56. Ree JB, Satoh Y, Isono T, Satoh T. Bicyclic topology transforms self-assembled nanostructures in block copolymer thin films. Nano Lett. 2020;20:6520–5.

    Article  CAS  PubMed  Google Scholar 

  57. Shingu T, Yamamot T, Tajima K, Isono T, Satoh T. Synthesis of m-ABC tricyclic miktoarm star polymer via intramolecular click cyclization. Polymers. 2018;10:877.

    Article  PubMed Central  Google Scholar 

  58. Raynaud J, Absalon C, Gnanou Y, Taton D. N-Heterocyclic carbene-organocatalyzed ring-opening polymerization of ethylene oxide in the presence of alcohols or trimethylsilyl nucleophiles as chain moderators for the synthesis of α,ω-heterodifunctionalized poly(ethylene oxide)s. Macromolecules. 2010;43:2814–23.

    Article  CAS  Google Scholar 

  59. Rexin O, Mülhaupt R. Anionic ring-opening polymerization of propylene oxide in the presence of phosphonium catalysts. J Polym Sci Part A: Polym Chem. 2002;40:864–73.

    Article  CAS  Google Scholar 

  60. Chen Y, Shen J, Liu S, Zhao J, Wang Y, Zhang G. High efficiency organic lewis pair catalyst for ring-opening polymerization of epoxides with chemoselectivity. Macromolecules. 2018;51:8286–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the MEXT Grant-in-Aid for Challenging Exploratory Research (25620089, 16K14000, and 19K22209), JST CREST (JPMJCR19T4), and the Creative Research Institute (CRIS) of Hokkaido University. The author thanks Mr. Yoshinobu Mato (Graduate School of Chemical Sciences and Engineering, Hokkaido University) for kindly providing the schematic diagrams of the architectural BCPs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Isono.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isono, T. Synthesis of functional and architectural polyethers via the anionic ring-opening polymerization of epoxide monomers using a phosphazene base catalyst. Polym J 53, 753–764 (2021). https://doi.org/10.1038/s41428-021-00481-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00481-3

This article is cited by

Search

Quick links