Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

A case study of monomer design for controlled/living supramolecular polymerization

Abstract

The development of controlled/living polymerization has contributed significantly to the exploration of new phenomena and applications in polymer physics and materials science. This method has recently been translated into the supramolecular domain, where it is likewise expected to open the door to fruitful fields of research; however, the principles of monomer design remain elusive. In this focus review, I present a case study of a series of porphyrin-based monomers that we have investigated over the past 10 years. By systematically designing monomers, we have been able to gain deep insights into the mechanisms of controlled/living supramolecular polymerization, and we have even been able to apply the developed method to synthesize two-dimensional supramolecular nanosheets with controlled areas and aspect ratios. This case study provides evidence for how nanostructures with precisely defined dimensions and optimized properties can be created using appropriate monomer design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Odian G. Principle of polymerization. 4th ed. New Jersey: John Wiley & Sons, Inc. Hoboken; 2004.

  2. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao D, Moore JS. Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org Biomol Chem. 2003;1:3471–91.

    Article  CAS  PubMed  Google Scholar 

  4. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Supramolecular polymerization. Chem Rev. 2009;109:5687–754.

    Article  PubMed  CAS  Google Scholar 

  5. Chen Z, Lohr A, Saha-Möller CR, Würthner F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem Soc Rev. 2009;38:564–84.

    Article  CAS  PubMed  Google Scholar 

  6. Kulkarni C, Balasubramanian S, George SJ. What molecular features govern the mechanism of supramolecular polymerization? ChemPhysChem. 2013;14:661–73.

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Tan X, Wang Z, Zhang X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev. 2015;115:7196–239.

    Article  CAS  PubMed  Google Scholar 

  8. Rest C, Kandanelli R, Fernández G. Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem Soc Rev. 2015;44:2543–72.

    Article  CAS  PubMed  Google Scholar 

  9. Besenius P. Controlling supramolecular polymerization through multicomponent self-assembly. J Polym Sci A Polym Chem. 2017;55:34–78.

    Article  CAS  Google Scholar 

  10. Adelizzi B, Van Zee NJ, de Windt LNJ, Palmans ARA, Meijer EW. Future of supramolecular copolymers unveiled by reflecting on covalent copolymerization. J Am Chem Soc. 2019;141:6110–21.

    Article  CAS  PubMed  Google Scholar 

  11. Hartlieb M, Mansfield EDH, Perrier S. A guide to supramolecular polymerizations. Polym Chem. 2020;11:1083–110.

    Article  CAS  Google Scholar 

  12. Aida T, Meijer EW. Supramolecular polymers–we’ve come full circle. Isr J Chem. 2020;60:33–47.

    Article  CAS  Google Scholar 

  13. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev. 2016;116:13752–990.

    Article  CAS  PubMed  Google Scholar 

  14. Yagai S, Kitamoto Y, Datta S, Adhikari B. Supramolecular polymers capable of controlling their topology. Acc Chem Res. 2019;52:1325–35.

    CAS  PubMed  Google Scholar 

  15. Shimizu T, Ding W, Kameta N. Soft-matter nanotubes: a platform for diverse functions and applications. Chem Rev. 2020;120:2347–407.

    Article  CAS  PubMed  Google Scholar 

  16. Grubbs RB, Grubbs RH. 50th anniversary perspective: living polymerization–emphasizing the molecule in macromolecules. Macromolecules. 2017;50:6979–97.

    Article  CAS  Google Scholar 

  17. Bates CM, Bates FS. 50th anniversary perspective: block polymers–pure potential. Macromolecules. 2017;50:3–22.

    Article  CAS  Google Scholar 

  18. Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K. From precision polymers to complex materials and systems. Nat Rev Mater. 2016;1:16024.

    Article  CAS  Google Scholar 

  19. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Ky Hirschberg JHK, Lange RFM, et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science. 1997;278:1601–4.

    Article  CAS  PubMed  Google Scholar 

  20. Oosawa F, Kasai M. A theory of linear and helical aggregations of macromolecules. J Mol Biol. 1962;4:10–21.

    Article  CAS  PubMed  Google Scholar 

  21. Edelstein-Keshet L, Ermentrout BR. Models for the length distributions of actin filaments: I. Simple polymerization and fragmentation. Bull Math Biol. 1998;60:449–75.

    Article  CAS  PubMed  Google Scholar 

  22. Jonkheijm P, van der Schoot P, Schenning APHJ, Meijer EW. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science. 2006;313:80–3.

    Article  CAS  PubMed  Google Scholar 

  23. Smulders MMJ, Nieuwenhuizen MML, de Greef TFA, van der Schoot P, Schenning APHJ, Meijer EW. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem Eur J. 2010;16:362–7.

    Article  CAS  PubMed  Google Scholar 

  24. Korevaar PA, George SJ, Markvoort AJ, Smulders MMJ, Hilbers PAJ, Schenning APHJ, et al. Pathway complexity in supramolecular polymerization. Nature. 2012;481:492–6.

    Article  CAS  PubMed  Google Scholar 

  25. Korevaar PA, De Greef TFA, Meijer EW. Pathway complexity in π–conjugated materials. Chem Mater. 2014;26:576–86.

    Article  CAS  Google Scholar 

  26. Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M. Living supramolecular polymerization realized through a biomimetic approach. Nat Chem. 2014;6:188–95.

    Article  CAS  PubMed  Google Scholar 

  27. Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T. A rational strategy for the realization of chain-growth supramolecular polymerization. Science. 2015;347:646–51.

    Article  CAS  PubMed  Google Scholar 

  28. Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Würthner F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J Am Chem Soc. 2015;137:3300–7.

    Article  CAS  PubMed  Google Scholar 

  29. Jung SH, Bochicchio D, Pavan GM, Takeuchi M, Sugiyasu K. A block supramolecular polymer and its kinetically enhanced stability. J Am Chem Soc. 2018;140:10570–77.

    Article  CAS  PubMed  Google Scholar 

  30. Wanger W, Wehner M, Stepanenko V, Würthner F. Supramolecular block copolymers by seeded living polymerization of perylene bisimides. J Am Chem Soc. 2019;141:12044–54.

    Article  CAS  Google Scholar 

  31. Sarkar A, Sasmal R, Empereur-mot C, Bochicchio D, Kompella SVK, Sharma K, et al. Self-sorted, random, and block supramolecular copolymers via sequence controlled, multicomponent self-assembly. J Am Chem Soc. 2020;142:7606–17.

    Article  CAS  PubMed  Google Scholar 

  32. Endo M, Fukui T, Jung SH, Yagai S, Takeuchi M, Sugiyasu K. Photoregulated living supramolecular polymerization established by combining energy landscapes of photoisomerization and nucleation-elongation processes. J Am Chem Soc. 2016;138:14347–53.

    Article  CAS  PubMed  Google Scholar 

  33. Pal A, Malakoutikhah M, Leonetti G, Tezcan M, Colomb-Delsuc M, Nguyen VD, et al. Controlling the structure and length of self-synthesizing supramolecular polymers through nucleated growth and disassembly. Angew Chem Int Ed. 2015;54:7852–6.

    Article  CAS  Google Scholar 

  34. Haedler AT, Meskers SCJ, Zha RH, Kivala M, Schmidt HW, Meijer EW. Pathway complexity in the enantioselective self-assembly of functional carbonyl-bridged triarylamine trisamides. J Am Chem Soc. 2016;138:10539–45.

    Article  CAS  PubMed  Google Scholar 

  35. Robinson ME, Lunn DJ, Nazemi A, Whittell GR, De Cola L, Manners I. Length control of supramolecular polymeric nanofibers based on stacked planar platinum(II) complexes by seeded-growth. Chem Commun. 2015;51:15921–4.

    Article  CAS  Google Scholar 

  36. Wehner M, Würthner F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat Rev Chem. 2020;4:38–53.

    Article  CAS  Google Scholar 

  37. Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science. 2007;317:644–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gilroy JB, Gädt T, Whittell GR, Chabanne L, Mitchels JM, Richardson RM, et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat Chem. 2010;2:566–70.

    Article  CAS  PubMed  Google Scholar 

  39. Rupar PA, Chabanne L, Winnik MA, Manners I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science. 2012;337:559–62.

    Article  CAS  PubMed  Google Scholar 

  40. Mukhopadhyay RD, Ajayaghosh A. Living supramolecular polymerization. Science. 2015;349:241–2.

    Article  CAS  PubMed  Google Scholar 

  41. Van der Zwaag D, de Greef TFA, Meijer EW. Programmable supramolecular polymerizations. Angew Chem Int Ed. 2015;54:8334–6.

    Article  CAS  Google Scholar 

  42. Shirakawa M, Kawano S, Fujita N, Sada K, Shinkai S. Hydrogen-bond-assisted control of H versus J aggregation mode of porphyrins stacks in an organogel system. J Org Chem. 2003;68:5037–44.

    Article  CAS  PubMed  Google Scholar 

  43. Shirakawa M, Fujita N, Shinkai S. A stable single piece of unimolecularly p-stacked porphyrin aggregate in a thixotropic low molecular weight gel: a one-dimensional molecular template for polydiacetylene wiring up to several tens of micrometers in length. J Am Chem Soc. 2005;127:4164–5.

    Article  CAS  PubMed  Google Scholar 

  44. van Hameren R, Schön P, van Buul AM, Hoogboom J, Lazarenko SV, Gerritsen JW, et al. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science. 2006;314:1433–36.

    Article  PubMed  CAS  Google Scholar 

  45. Helmich F, Lee CC, Nieuwenhuizen MML, Gielen JC, Christianen PCM, Larsen A, et al. Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew Chem Int Ed. 2010;49:3939–42.

    Article  CAS  Google Scholar 

  46. Lohr A, Lysetska M, Würthner F. Supramolecular stereomutation in kinetic and thermodynamic self-assembly of helical merocyanine dye nanorods. Angew Chem Int Ed. 2005;44:5071–4.

    Article  CAS  Google Scholar 

  47. Lohr A, Würthner F. Evolution of homochiral helical dye assemblies: involvement of autocatalysis in the “majority-rules” effect. Angew Chem Int Ed. 2008;47:1232–6.

    Article  CAS  Google Scholar 

  48. Ogi S, Fukui T, Jue ML, Takeuchi M, Sugiyasu K. Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design. Angew Chem Int Ed. 2014;53:14363–7.

    Article  CAS  Google Scholar 

  49. Fukui T, Takeuchi M, Sugiyasu K. Autocatalytic time-dependent evolution of metastable two-component supramolecular assemblies to self-sorted or coassembled state. Sci Rep. 2017;7:2425. https://www.nature.com/articles/s41598-017-02524-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Fukui T, Sasaki N, Takeuchi M, Sugiyasu K. Living supramolecular polymerization based on reversible deactivation of a monomer by using a ‘dummy’ monomer. Chem Sci. 2019;10:6770–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fukui T, Kawai S, Fujinuma S, Matsushita Y, Yasuda T, Sakurai T, et al. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat Chem. 2017;9:493–9.

    Article  CAS  PubMed  Google Scholar 

  52. Gädt T, Ieong NS, Cambridge G, Winnik MA, Manners I. Complex and hierarchical micelle architectures from deblock copolymers using living, crystallization-driven polymerizations. Nat Mater. 2009;8:144–50.

    Article  PubMed  CAS  Google Scholar 

  53. Hudson ZM, Boott CE, Robinson ME, Rupar PA, Winnik MA, Manners I. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat Chem. 2014;6:893–8.

    Article  CAS  PubMed  Google Scholar 

  54. He X, Hsiao MS, Boott CE, Harniman RL, Nazemi A, Li X, et al. Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nat Mater. 2017;16:481–8.

    Article  CAS  PubMed  Google Scholar 

  55. Qiu H, Gao Y, Boott CE, Gould OEC, Harniman RL, Miles MJ, et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science. 2016;352:697–701.

    Article  CAS  PubMed  Google Scholar 

  56. Sasaki N, Yuan J, Fukui T, Takeuchi M, Sugiyasu K. Control over the aspect ratio of supramolecular nanosheets by molecular design. Chem Eur J. 2020;26:7840–6.

    Article  CAS  PubMed  Google Scholar 

  57. Fukui T, Takeuchi M, Sugiyasu K. Impact of a subtle structural difference on the kinetic behavior of metastable supramolecular assemblies. Polymer. 2017;128:311–6.

    Article  CAS  Google Scholar 

  58. Sasaki N Mabesoone MFJ, Kikkawa J, Fukui T, Shioya N, Shimoaka T, et al. Nat Commun. 2020;11;3578 https://doi.org/10.1038/s41467-020-17356-5

  59. Kato M, Ito H, Hasegawa M, Ishii K. Soft crystals: flexible response systems with high structural order. Chem Eur J. 2019;25:5105–12.

    Article  CAS  PubMed  Google Scholar 

  60. Fukui T, Uchihashi T, Sasaki N, Watanabe H, Takeuchi M, Sugiyasu K. Direct observation and manipulation of supramolecular polymerization by high-speed atomic force microscopy. Angew Chem Int Ed. 2018;57:15465–70.

    Article  CAS  Google Scholar 

  61. Ellis TK, Galerne M, Armao JJ IV, Osypenko A, Martel D, Maaloum M, et al. Supramolecular electropolymerization. Angew Chem Int Ed. 2018;57:15749–53.

    Article  CAS  Google Scholar 

  62. Numata M, Sakai R. Kinetically controllable supramolecular polymerization through synchronized activation of monomers. Bull Chem Soc Jpn. 2014;87:858–62.

    Article  CAS  Google Scholar 

  63. Spitzer D, Marichez V, Formon GJM, Besenius P, Hermans TM. Surface-assisted self-assembly of a hydrogel by proton diffusion. Angew Chem Int Ed. 2018;57:11349–53.

    Article  CAS  Google Scholar 

  64. Yagai S, Goto Y, Karatsu T, Kitamura A, Kikkawa Y. Catenation of self-assembled nanorings. Chem Eur J. 2011;17:13657–60.

    Article  CAS  PubMed  Google Scholar 

  65. Datta S, Kato Y, Higashiharaguchi S, Aratsu K, Isobe A, Saito T, et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature. 2020;583:400–5.

    Article  CAS  PubMed  Google Scholar 

  66. Wu Q, Rauscher PM, Lang X, Wojtecki RJ, de Pablo JJ, Hore MJA, et al. Poly[n]catenanes: synthesis of molecular interlocked chains. Science. 2017;358:1434–9.

    Article  CAS  PubMed  Google Scholar 

  67. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295:2418–21.

    Article  CAS  PubMed  Google Scholar 

  68. Service RF. How far can we push chemical self-assembly. Science. 2005;309:95.

    Article  CAS  PubMed  Google Scholar 

  69. Mattia E, Otto S. Supramolecular systems chemistry. Nat Nanotech. 2015;10:111–9.

    Article  CAS  Google Scholar 

  70. Vantomme G, Meijer EW. The construction of supramolecular systems. Science. 2019;363:1396–7.

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt HW, Würthner F. A periodic system of supramolecular elements. Angew Chem Int Ed. 2020;59:8766–75.

    Article  CAS  Google Scholar 

  72. Pearce AK, Wilks TR, Arno MC, O’Reilly RK. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem. 2021;5:21–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research, JSPS KAKENHI Grant Numbers 15H05483 and 19K05592; and by Grants-in-Aid for Scientific Research on Innovative Areas, JSPS KAKENHI Grant Numbers 16H00787 (Dynamic ordering of biomolecular systems for creation of integrated functions), 20H04682 (Soft Crystals, Science and Photofunctions of Flexible Response Systems with High Order), and 26102009 (π-System Figuration, Control of Electron and Structural Dynamism for Innovative Functions). I also would like to acknowledge the Sekisui Chemical Grant Program. The studies reviewed here were primarily performed by Dr. Soichiro Ogi (porphyrin monomers 1 and 2), Dr. Tomoya Fukui (4, 5, 61, 62, 63, and 7), and Dr. Norihiko Sasaki (8, 10, 12, 6N3, and 6F). I would also like to thank Dr. Masayuki Takeuchi for valuable discussions and his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Sugiyasu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyasu, K. A case study of monomer design for controlled/living supramolecular polymerization. Polym J 53, 865–875 (2021). https://doi.org/10.1038/s41428-021-00478-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00478-y

This article is cited by

Search

Quick links