Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Versatile functionalization of polymeric soft materials by implanting various types of dynamic cross-links

Abstract

The present focus review describes functionalization methods for polymeric materials based on the use of various types of cross-links, such as supramolecular cross-links, photocross-links, and associative dynamic covalent bonded cross-links. First, the enhancement and precise tuning of the thermal and mechanical properties of polymeric materials are described; then, the design and physical property tuning of functional materials based on a special type of cross-linked material with associative dynamic covalent bonded cross-links, known as vitrimers, are demonstrated. This review article provides useful hints for the preparation of functional cross-linked materials, which are especially important in modern and future societies considering the huge demand for durable materials with versatile physical properties.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Himenz PC, Lodge TP. Polymer Chemistry 2nd ed. CRC Press: Boca Raton; 2007.

  2. Lehn JM. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angew Chem Int Ed 1988;27:89–112.

    Article  Google Scholar 

  3. Lehn JM. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed 1990;29:1304–19.

    Article  Google Scholar 

  4. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Supramolecular polymers. Chem Rev 2001;101:4071–97.

    Article  CAS  PubMed  Google Scholar 

  5. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science 2012;335:813–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harada A, Takashima Y, Nakahata M. Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc Chem Res 2014;47:2128–40.

    Article  CAS  PubMed  Google Scholar 

  7. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008;451:977–80.

    Article  CAS  PubMed  Google Scholar 

  8. Yan XZ, Wang F, Zheng B, Huang FH. Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 2012;41:6042–65.

    Article  CAS  PubMed  Google Scholar 

  9. Hayashi M, Tournilhac F. Thermal stability enhancement of hydrogen bonded semicrystalline thermoplastics achieved by combination of aramide chemistry and supramolecular chemistry. Polym Chem 2017;8:461–71.

    Article  CAS  Google Scholar 

  10. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 2011;10:14–27.

    Article  CAS  PubMed  Google Scholar 

  11. Jin YH, Yu C, Denman RJ, Zhang W. Recent advances in dynamic covalent chemistry. Chem Soc Rev 2013;42:6634–54.

    Article  CAS  PubMed  Google Scholar 

  12. Podgorski M, Fairbanks BD, Kirkpatrick BE, McBride M, Martinez A, Dobson A, et al. Toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks (CANs). Adv Mater 2020;32:1906876.

    Article  CAS  Google Scholar 

  13. Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science 2011;334:965–8.

    Article  CAS  PubMed  Google Scholar 

  14. Winne JM, Leibler L, Du, Prez FE. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polym Chem 2019;10:6091–108.

    Article  CAS  Google Scholar 

  15. Noro A, Hayashi M, Matsushita Y. Design and properties of supramolecular polymer gels. Soft Matter 2012;8:6416–29.

    Article  CAS  Google Scholar 

  16. Hayashi M, Obara H, Shibata K, Sugimoto K, Takasu A. Glass transition analysis of model metallosupramolecular polyesters bearing pendant pyridine ligands with a controlled ligand-ligand distance. Polym J 2020;52:505–14.

    Article  CAS  Google Scholar 

  17. Hayashi M, Shibata K, Kawarazaki I, Takasu A. Simple strategy for dual control of crystallization and thermal property on polyesters by dispersing metal salts via multiple coordination bonds. Macromol Chem Phys 2018;219:1800127.

    Article  Google Scholar 

  18. Hayashi M, Sugimoto K, Takasu A. Preparation of all polyester-based semi-IPN elastomers containing self-associative or non-associative guest chains via post-blending cross-linking. Macromol Mater Eng 2019;304:1900147.

    Article  Google Scholar 

  19. Jackson AC, Beyer FL, Price SC, Rinderspacher BC, Lambeth RH. Role of metal-ligand bond strength and phase separation on the mechanical properties of metallopolymer films. Macromolecules 2013;46:5416–22.

    Article  CAS  Google Scholar 

  20. Shibata K, Hayashi M, Inai Y. Experimental and theoretical investigation of intrinsic pyridine isomer effects on physical property tuning of metallo supramolecular polymers bearing multiple pyridine ligands. ACS Appl Polym Mater 2020;2:2327–37.

    Article  CAS  Google Scholar 

  21. Liu J, Wang S, Tang Z, Huang J, Guo B, Huang G. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 2016;49:8593–604.

    Article  CAS  Google Scholar 

  22. Kobayashi Y, Hirase T, Takashima Y, Harada A, Yamaguchi H. Self-healing and shape-memory properties of polymeric materials cross-linked by hydrogen bonding and metal-ligand interactions. Polym Chem 2019;10:4519–23.

    Article  CAS  Google Scholar 

  23. Oba Y, Hayashi M, Takasu A. One-pot synthesis of dual supramolecular associative copolymers by using a novel acrylate monomer bearing urethane and pendant pyridine groups. Polym Chem 2020;11:2318–24.

    Article  CAS  Google Scholar 

  24. Kelen T, Tüdos FJ. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method. Macromol Sci Chem 1975;A9;1–27.

  25. Moad G, Solomon DH. The Chemistry of Radical Polymerization. Elsevier; 2006.

  26. Hayashi M, Kimura T, Oba Y, Takasu A. One-pot synthesis of dual supramolecular associative PMMA-based copolymers and the precise thermal property tuning. Macromol Chem Phys 2021;222:2000302.

    Article  CAS  Google Scholar 

  27. Hahn H, Chakraborty AK, Das J, Pople JA, Balsara NP. Order-disorder transitions in cross-linked block copolymer solids. Macromolecules 2005;38:1277–85.

    Article  CAS  Google Scholar 

  28. Gomez ED, Das J, Chakraborty AK, Pople JA, Balsara NP. Effect of cross-linking on the structure and thermodynamics of lamellar block copolymers. Macromolecules 2006;39:4848–59.

    Article  CAS  Google Scholar 

  29. Kawarazaki I, Hayashi M, Yamamoto K, Takasu A. Quick and efficient thermal stability enhancement of micro-phase separated structure formed from ABA triblock copolymers by photo cross-linking approach. Chemistryselect 2020;5:2842–7.

    Article  CAS  Google Scholar 

  30. Kawarazaki I, Hayashi M, Takasu A. Extraction of intrinsic cross-linking effects of A hard domains on segmental motion of B soft block for ABA triblock copolymer-based elastomers by utilizing photo cross-linking. Polymer 2020;192:122343.

    Article  CAS  Google Scholar 

  31. Hayashi M, Chen L. Functionalization of triblock copolymer elastomers by cross-linking the end blocks via trans-N-alkylation-based exchangeable bonds. Polym Chem 2020;11:1713–9.

    Article  CAS  Google Scholar 

  32. Hayashi M, Matsushima S, Noro A, Matsushita Y. Mechanical property enhancement of ABA block copolymer-based elastomers by incorporating transient cross-links into soft middle block. Macromolecules 2015;48:421–31.

    Article  CAS  Google Scholar 

  33. Gong JP. Why are double network hydrogels so tough? Soft Matter 2010;6:2583–90.

    Article  CAS  Google Scholar 

  34. Hayashi M, Noro A, Matsushita Y. Highly extensible supramolecular elastomers with large stress generation capability originating from multiple hydrogen bonds on the long soft network strands. Macromol Rapid Commun 2016;37:678–84.

    Article  CAS  PubMed  Google Scholar 

  35. Denissen W, Winne JM, Du Prez FE. Vitrimers: permanent organic networks with glass-like fluidity. Chem Sci 2016;7:30–8.

    Article  CAS  PubMed  Google Scholar 

  36. Scheutz GM, Lessard JJ, Sims MB, Sumerlin BS. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J Am Chem Soc 2019;141:16181–96.

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, et al. A thermally re-mendable cross-linked polymeric material. Science 2002;295:1698–702.

    Article  CAS  PubMed  Google Scholar 

  38. Otsuka H. Reorganization of polymer structures based on dynamic covalent chemistry: polymer reactions by dynamic covalent exchanges of alkoxyamine units. Polym J 2013;45:879–91.

    Article  CAS  Google Scholar 

  39. Zou WK, Dong JT, Luo YW, Zhao Q, Xie T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv Mater 2017;29:1606100.

    Article  Google Scholar 

  40. Kloxin CJ, Bowman CN. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem Soc Rev 2013;42:7161–73.

    Article  CAS  PubMed  Google Scholar 

  41. Capelot M, Unterlass MM, Tournilhac F, Leibler L. Catalytic control of the vitrimer glass transition. ACS Macro Lett 2012;1:789–92.

    Article  CAS  Google Scholar 

  42. Gablier A, Saed MO, Terentjev EM. Rates of transesterification in epoxy-thiol vitrimers. Soft Matter 2020;16:5195–202.

    Article  CAS  PubMed  Google Scholar 

  43. Spiesschaert Y, Taplan C, Stricker L, Guerre M, Winne JM, Du, et al. Influence of the polymer matrix on the viscoelastic behaviour of vitrimers. Polym Chem 2020;11:5377–85.

    Article  CAS  Google Scholar 

  44. Hayashi M. Dominant factor of bond-exchange rate for catalyst-free polyester vitrimers with internal tertiary amine moieties. ACS Appl Polym Mater 2020;2:5365–70.

    Article  CAS  Google Scholar 

  45. Hayashi M, Yano R, Takasu A. Synthesis of amorphous low Tg polyesters with multiple COOH side groups and their utilization for elastomeric vitrimers based on post-polymerization cross-linking. Polym Chem 2019;10:2047–56.

    Article  CAS  Google Scholar 

  46. Hayashi M, Katayama A. Preparation of colorless, highly transparent, epoxy-based vitrimers by the thiol-epoxy click reaction and evaluation of their shape-memory properties. ACS Appl Polym Mater 2020;2:2452–7.

    Article  CAS  Google Scholar 

  47. Hayashi M, Yano R. Fair investigation of cross-link density effects on the bond-exchange properties for trans-esterification-based vitrimers with identical concentrations of reactive groups. Macromolecules 2020;53:182–9.

    Article  CAS  Google Scholar 

  48. Fortman DJ, Brutman JP, Cramer CJ, Hillmyer MA, Dichtel WR. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J Am Chem Soc 2015;137:14019–22.

    Article  CAS  PubMed  Google Scholar 

  49. Shi Q, Yu K, Kuang X, Mu X, Dunn CK, Dunn ML, et al. Recyclable 3D printing of vitrimer epoxy. Mater Horiz. 2017;4:598–607.

    Article  CAS  Google Scholar 

  50. Yang ZH, Wang QH, Wang TM. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl Mater Interfaces. 2016;8:21691–9.

    Article  CAS  PubMed  Google Scholar 

  51. Liu YJ, Tang ZH, Chen Y, Zhang CF, Guo BC. Engineering of beta-hydroxyl esters into elastomer-nanoparticle interface toward malleable, robust, and reprocessable vitrimer composites. ACS Appl Mater Interfaces. 2018;10:2992–3001.

    Article  CAS  PubMed  Google Scholar 

  52. Chen X, Li LQ, Wei T, Venerus DC, Torkelson JM. Reprocessable polyhydroxyurethane network composites: effect of filler surface functionality on cross-link density recovery and stress relaxation. ACS Appl Mater Interfaces. 2019;11:2398–407.

    Article  CAS  PubMed  Google Scholar 

  53. Chen L, Chu D, Cheng ZA, Wang M, Huang S. Designing seamless-welded liquid-crystalline soft actuators with a “glue-free” method by dynamic boroxines. Polymer. 2020;208:122962.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank all past and present colleagues for their fruitful contributions to this focus review. He is greatly thankful to Prof. Y. Matsushita (Toyota Physical and Chemical Research Institute), Prof. M. Tokita (Tokyo Institute of Technology), and Prof. A. Takasu (Nagoya Institute of Technology), Prof. L. Leibler (ESPCI Paris-tech), and Prof. F. Tournilhac (ESPCI Paris-tech) for their tremendous encouragement and assistance. This research was supported by KAKENHI grants 17k17708 and 19K15633 from the Japan Society for the Promotion of Science (JSPS) and by various other research foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikihiro Hayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayashi, M. Versatile functionalization of polymeric soft materials by implanting various types of dynamic cross-links. Polym J 53, 779–788 (2021). https://doi.org/10.1038/s41428-021-00474-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00474-2

Search

Quick links