Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simple preparation, properties, and functions of vitrimer-like polyacrylate elastomers using trans-N-alkylation bond exchange

Abstract

Herein, we report the preparation of polyacrylate-based vitrimer-like elastomers with dynamic bond-exchangeable cross-links. The component polymer is a poly(ethyl acrylate)-based copolymer that bears pyridine groups randomly and was cross-linked by a quaternization reaction with dibromo cross-linkers (dibromo hexane). In this system, bond exchange is induced via trans-N-alkylation at high temperatures, which is revealed by elongational creep and stress-relaxation tests. Some useful functions of the present material, such as reprocessability, recyclability, and unique solubility, were also demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Supramolecular polymers. Chem Rev. 2001;101:4071–97.

    Article  CAS  Google Scholar 

  2. Jin YH, Yu C, Denman RJ, Zhang W. Recent advances in dynamic covalent chemistry. Chem Soc Rev. 2013;42:6634–54.

    Article  CAS  Google Scholar 

  3. Noro A, Hayashi M, Matsushita Y. Design and properties of supramolecular polymer gels. Soft Matter. 2012;8:6416–29.

    Article  CAS  Google Scholar 

  4. Herbst F, Dohler D, Michael P, Binder WH. Self-healing polymers via supramolecular forces. Macromol Rapid Commun. 2013;34:203–20.

    Article  CAS  Google Scholar 

  5. Chakma P, Konkolewicz D. Dynamic covalent bonds in polymeric materials. Angew Chem Int Ed. 2019;58:9682–95.

    Article  CAS  Google Scholar 

  6. Scheutz GM, Lessard JJ, Sims MB, Sumerlin BS. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J Am Chem Soc. 2019;141:16181–96.

    Article  CAS  Google Scholar 

  7. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR. A thermally re-mendable cross-linked polymeric material. Science. 2002;295:1698–702.

    Article  CAS  Google Scholar 

  8. Obadia MM, Mudraboyina BP, Serghei A, Montarnal D, Drockenmuller E. Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C-N bonds. J Am Chem Soc. 2015;137:6078–83.

    Article  CAS  Google Scholar 

  9. Obadia MM, Jourdain A, Cassagnau P, Montarnal D, Drockenmuller E. Tuning the viscosity profile of ionic vitrimers incorporating 1,2,3-triazolium cross-links. Adv Funct Mater. 2017;27:1703258.

    Article  Google Scholar 

  10. Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science. 2011;334:965–8.

    Article  CAS  Google Scholar 

  11. Capelot M, Unterlass MM, Tournilhac F, Leibler L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012;1:789–92.

    Article  CAS  Google Scholar 

  12. Capelot M, Montarnal D, Tournilhac F, Leibler L. Metal-catalyzed transesterification for healing and assembling of thermosets. J Am Chem Soc. 2012;134:7664–7.

    Article  CAS  Google Scholar 

  13. Demongeot A, Groote R, Goossens Han, Hoeks T, Tournilhac F, Leibler L. Cross-linking of poly(butylene terephthalate) by reactive extrusion using Zn(II) epoxy-vitrimer chemistry. Macromolecules. 2017;50:6117–27.

    Article  CAS  Google Scholar 

  14. Hayashi M, Yano R, Takasu A. Synthesis of amorphous low T-g polyesters with multiple COOH side groups and their utilization for elastomeric vitrimers based on post-polymerization cross-linking. Polym Chem. 2019;10:2047–56.

    Article  CAS  Google Scholar 

  15. Hayashi M, Yano R. Fair investigation of cross-link density effects on the bond-exchange properties for trans-esterification-based vitrimers with identical concentrations of reactive groups. Macromolecules. 2020;53:182–9.

    Article  CAS  Google Scholar 

  16. Hayashi M. Implantation of recyclability and healability into cross-linked commercial polymers by applying the vitrimer concept. Polymers. 2020;12:1322.

    Article  CAS  Google Scholar 

  17. Röttger M, Domenech T, van der Weegen R, Breuillac A. Nicolaÿ R, Leibler L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science. 2017;356:62–65.

    Article  Google Scholar 

  18. Lessard JJ, Garcia LF, Easterling CP, Sims MB, Bentz KC, Arencibia S et al. Catalyst-free vitrimers from vinyl polymers. Macromolecules. 2019;52:2105–11.

    Article  CAS  Google Scholar 

  19. Lossada F, Jiao DJ, Yao XY, Walther A. Waterborne methacrylate-based vitrimers. ACS Macro Lett. 2020;9:70–76.

    Article  CAS  Google Scholar 

  20. Debnath S, Kaushal S, Ojha U. Catalyst-free partially bio-based polyester vitrimers. ACS Appl Polym Mater. 2020;2:1006–13.

    Article  CAS  Google Scholar 

  21. Huang J, Zhang LJ, Tang ZH, Wu SW, Guo BC. Reprocessable and robust crosslinked elastomers via interfacial C-N transalkylation of pyridinium. Compos Sci Technol. 2018;168:320–6.

    Article  CAS  Google Scholar 

  22. Hayashi M, Chen L. Functionalization of triblock copolymer elastomers by cross-linking the end blocks via trans-N-alkylation-based exchangeable bonds. Polym Chem. 2020;11:1713–9.

    Article  CAS  Google Scholar 

  23. Mun GA, Nurkeeva ZS, Beissegul AB, Dubolazov AV, Urkimbaeva PI, Park K, et al. Temperature-responsive water-soluble copolymers based on 2-hydroxyethyl acrylate and butyl acrylate. Macromol Chem Phys. 2007;208:979–87.

    Article  CAS  Google Scholar 

  24. Oba Y, Hayashi M, Takasu A. One-pot synthesis of dual supramolecular associative copolymers by using a novel acrylate monomer bearing urethane and pendant pyridine groups. Polym Chem. 2020;11:2318–24.

    Article  CAS  Google Scholar 

  25. Li GL, Shen JR, Zhu YL. A study of pyridinium-type functional polymers. III. Preparation and characterization of insoluble pyridinium-type polymers. J Appl Polym Sci. 2000;78;668–75.

    Article  CAS  Google Scholar 

  26. Liu CH, Xiao CB. Characterization of films from chitosan and quaternized poly(4-vinyl-N-butyl) pyridine solutions. J Appl Polym Sci. 2004;92;559–66.

    Article  CAS  Google Scholar 

  27. Tazuke S, Okamura S. Effects of metal salts on polymerization. Part III. Radical polymerizabilities and infrared spectra of vinylpyridines complexed with zinc and cadmium salts. J Polym Sci., Part A-1: Polym. Chem. 1967;5;1083–99.

    Article  CAS  Google Scholar 

  28. Kuo SW, Wu CH, Chang FC. Thermal properties, interactions, morphologies, and conductivity behavior in blends of poly(vinylpyridine)s and zinc perchlorate. Macromolecules. 2004;37;192–200.

    Article  CAS  Google Scholar 

  29. Shi Q, Yu K, Dunn ML, Wang TJ, Qi HJ. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers. Macromolecules. 2016;49:5527–37.

    Article  CAS  Google Scholar 

  30. Kuang X, Shi Q, Zhou Y, Zhao Z, Wang T, Qi HJ. Dissolution of epoxy thermosets via mild alcoholysis: the mechanism and kinetics study. RSC Adv. 2018;8:1493–502.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. K. Nagata for his assistance in performing the elongation creep tests. This work was supported by a grant from the TOYOAKI SCHOLARSHIP FOUNDATION (M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikihiro Hayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayashi, M., Oba, Y., Kimura, T. et al. Simple preparation, properties, and functions of vitrimer-like polyacrylate elastomers using trans-N-alkylation bond exchange. Polym J 53, 835–840 (2021). https://doi.org/10.1038/s41428-021-00472-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00472-4

This article is cited by

Search

Quick links