Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preparation of agarose xerogel nanoparticles by solvent evaporation from water nanodroplets

Abstract

We developed a W/O miniemulsion reactor system enabling the preparation of biopolymer nanoparticles and control of their morphologies and inner microstructures. First, the W/O miniemulsion was prepared by suspending water nanodroplets containing agarose in oil. Then, we produced agarose hydrogel nanoparticles (AgarH) by the gelation of agarose in nanodroplets. Next, we prepared agarose xerogel nanoparticles (AgarX) by precisely tuning the water evaporation from AgarH. We controlled the morphologies (solid and hollow) and crystal structure of AgarX by changing the pressure and temperature during water evaporation. In fact, AgarX with a hollow structure was generated through rapid evaporation at a low pressure. AgarH was dissolved in Milli-Q water when the temperature was raised to 90 °C. On the other hand, AgarX remained a solid particle under the same conditions, likely because of its high crystallinity. We expect that this technique can be applied to prepare xerogels of diverse biomass-based polymers for the replacement of synthetic polymers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14:1629–54.

    Article  CAS  Google Scholar 

  2. Stanisz M, Klapiszewski L, Jesionowski T. Recent advances in the fabrication and application of biopolymer-based micro- and nnanostructures: a comprehensive review. Chem Eng J. 2020;397:125409.

    Article  CAS  Google Scholar 

  3. van Dongen SFM, de Hoog HPM, Peters R, Nallani M, Nolte RJM, van Hest JCM. Biohybrid polymer capsules. Chem Rev. 2009;109:6212–74.

    Article  Google Scholar 

  4. Matalanis A, Jones OG, McClements DJ. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 2011;25:1865–80.

    Article  CAS  Google Scholar 

  5. Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, et al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Controlled Release. 1998;54:313–20.

    Article  CAS  Google Scholar 

  6. Fukui Y, Fukuda M, Fujimoto K. Generation of mucin gel particles with self-degradable and -releasable properties. J Mater Chem B. 2018;6:781–8.

    Article  CAS  Google Scholar 

  7. Fukui Y, Sakai D, Fujimoto K. Preparation of protein nano-objects by assembly of polymer-grafted proteins. Colloids Surf B-Biointerfaces. 2016;148:503–10.

    Article  CAS  Google Scholar 

  8. Fukui Y, Kabayama N, Fujimoto K. Fine-tuning in mineral cross-linking of biopolymer nanoparticle for incorporation and release of cargo. Colloids Surf B-Biointerfaces. 2015;136:168–74.

    Article  CAS  Google Scholar 

  9. Kaihara S, Suzuki Y, Fujimoto K. In situ synthesis of polysaccharide nanoparticles via polyion complex of carboxymethyl cellulose and chitosan. Colloids Surf B-Biointerfaces. 2011;85:343–8.

    Article  CAS  Google Scholar 

  10. Fujimoto K, Iwasaki C, Arai C, Kuwako M, Yasugi E. Control of cell death by the smart polymeric vehicle. Biomacromolecules. 2000;1:515–8.

    Article  CAS  Google Scholar 

  11. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600–3.

    Article  CAS  Google Scholar 

  12. Reis CP, Neufeld RJ, Vilela S, Ribeiro AJ, Veiga F. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J Microencapsul. 2006;23:245–57.

    Article  CAS  Google Scholar 

  13. Hecht LL, Winkelmann M, Wagner C, Landfester K, Gerlinger W, Sachweh B, et al. Miniemulsions for the production of nanostructured particles. Chem. Eng. Technol. 2012;35:1670–6.

    Article  CAS  Google Scholar 

  14. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887–913.

    Article  CAS  Google Scholar 

  15. Morikawa M, Yoshihara M, Endo T, Kimizuka N. Alpha-helical polypeptide microcapsules formed by emulsion-templated self-assembly. Chemistry. 2005;11:1574–8.

    Article  CAS  Google Scholar 

  16. Machado AHE, Lundberg D, Ribeiro AJ, Veiga FJ, Lindman B, Miguel MG, et al. Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions. Langmuir. 2012;28:4131–41.

    Article  CAS  Google Scholar 

  17. Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K. Synthesis and optimization of gelatin nanoparticles using the miniemulsion process. Biomacromolecules. 2008;9:2383–9.

    Article  CAS  Google Scholar 

  18. Ku KH, Shin JM, Yun H, Yi GR, Jang SG, Kim BJ. Multidimensional design of anisotropic polymer particles from solvent-evaporative emulsion. Adv. Funct. Mater. 2018;28:1802961.

    Article  Google Scholar 

  19. Li H, Mao X, Wang HY, Geng Z, Xiong BJ, Zhang LB, et al. Kinetically dependent self-assembly of chiral block copolymers under 3D confinement. Macromolecules. 2020;53:4214–23.

    Article  CAS  Google Scholar 

  20. Yiamsawas D, Beckers SJ, Lu H, Landfester K, Wurm FR. Morphology-controlled synthesis of lignin nanocarriers for drug delivery and carbon materials. Acs Biomater Sci Eng. 2017;3:2375–83.

    Article  CAS  Google Scholar 

  21. Meldrum FC, O’Shaughnessy C. Crystallization in confinement. Adv Mater. 2020;32:2001068.

    Article  CAS  Google Scholar 

  22. Staff RH, Landfester K, Crespy D. Recent advances in the emulsion solvent evaporation technique for the preparation of nanoparticles and nanocapsules. In: Percec V, editor. Hierarchical macromolecular structures: 60 years after the Staudinger Nobel Prize II. Advances in Polymer Science. Springer International Publishing AG, Gewerbestrasse 11, Cham, CH-6330, Swizerland. 2622013. pp. 329–44.

  23. Taden A, Landfester K. Crystallization of poly(ethylene oxide) confined in miniemulsion droplets. Macromolecules. 2003;36:4037–41.

    Article  CAS  Google Scholar 

  24. Argudo PG, Guzman E, Lucia A, Rubio RG, Ortega F. Preparation and application in drug storage and delivery of agarose nanoparticles. Int J Polym Sci. 2018;2018:7823587.

    Article  Google Scholar 

  25. Fukui Y, Fujimoto K. Bio-inspired nanoreactor based on a miniemulsion system to create organic-inorganic hybrid nanoparticles and nanofilms. J Mater Chem. 2012;22:3493–9.

    Article  CAS  Google Scholar 

  26. Antonietti M, Landfester K. Polyreactions in miniemulsions. Prog Polym Sci. 2002;27:689–757.

    Article  CAS  Google Scholar 

  27. Bulone D, Giacomazza D, Martorana V, Newman J, San Biagio PL. Ordering of agarose near the macroscopic gelation point. Phys Rev E. 2004;69:041401.

    Article  Google Scholar 

  28. Freile-Pelegrin Y, Madera-Santana T, Robledo D, Veleva L, Quintana P, Azamar JA. Degradation of agar films in a humid tropical climate: thermal, mechanical morphological and structural changes. Polym Degrad Stab. 2007;92:244–52.

    Article  CAS  Google Scholar 

  29. Foord SA, Atkins EDT. New X-ray-diffraction results from agarose - extended single helix structures and implications for gelation mechanism. Biopolymers 1989;28:1345–65.

    Article  CAS  Google Scholar 

  30. Valentin E, Nam HG, Kim PH, Joo HW, Shim HJ, Chang YK, et al. Application of a Dowex-50WX8 chromatographic process to the preparative-scale separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in acid hydrolysate of agarose. Sep Purif Technol. 2014;133:297–302.

    Article  CAS  Google Scholar 

  31. Prado HJ, Matulewicz MC, Bonelli PR, Cukierman AL. Studies on the cationization of agarose. Carbohydr Res. 2011;346:311–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Fujimoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fukui, Y., Inamura, R. & Fujimoto, K. Preparation of agarose xerogel nanoparticles by solvent evaporation from water nanodroplets. Polym J 53, 815–821 (2021). https://doi.org/10.1038/s41428-021-00471-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00471-5

This article is cited by

Search

Quick links