Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular crystallization directed by polymer size and overlap under dilute and crowded macromolecular conditions

Abstract

We demonstrate that dissolved polymers can direct molecular crystallization behavior under dilute and crowded conditions. Larger poly(ethylene glycol)s (PEGs) accelerated caffeine crystal formation in the dilute regime of PEG solutions, which was attributed to the depletion attraction that promoted caffeine cluster aggregation into crystal nuclei. Alternatively, in the semidilute regime, the caffeine crystal formation rate was insensitive to the molecular weight (MW) of PEGs. PEGs with various MWs appeared to induce depletion attraction to a similar extent as the properties of polymer solutions in the semidilute regime described by blobs, which are constant in size at a given polymer concentration irrespective of MW. This study highlights differences between in vitro polymer solutions and crowded intracellular environments composed of folded biomacromolecules and contributes to developing the use of in vitro macromolecular crowding for the control of molecular self-assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ellis RJ. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. 2001;26:597–604.

    Article  CAS  PubMed  Google Scholar 

  2. Minton AP. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem. 2001;276:10577–80.

    Article  CAS  PubMed  Google Scholar 

  3. Nakano S, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev. 2014;114:2733–58.

    Article  CAS  PubMed  Google Scholar 

  4. Rivas G, Minton AP. Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci. 2016;41:970–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hata Y, Sawada T, Serizawa T. Macromolecular crowding for materials-directed controlled self-assembly. J Mater Chem B 2018;6:6344–59.

    Article  CAS  PubMed  Google Scholar 

  6. Asakura S, Oosawa F. Interaction between particles suspended in solutions of macromolecules. J Polym Sci. 1958;33:183–92.

    Article  CAS  Google Scholar 

  7. Yodh AG, Lin K-H, Crocker JC, Dinsmore AD, Verma R, Kaplan PD. Entropically driven self-assembly and interaction in suspension. Philos Trans R Soc A Math Phys Eng Sci. 2001;359:921–37.

    Article  CAS  Google Scholar 

  8. Marenduzzo D, Finan K, Cook PR. The depletion attraction: an underappreciated force driving cellular organization. J Cell Biol. 2006;175:681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munishkina LA, Cooper EM, Uversky VN, Fink AL. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit. 2004;17:456–64.

    Article  CAS  PubMed  Google Scholar 

  10. White DA, Buell AK, Knowles TPJ, Welland ME, Dobson CM. Protein aggregation in crowded environments. J Am Chem Soc. 2010;132:5170–5.

    Article  CAS  PubMed  Google Scholar 

  11. Batra J, Xu K, Qin S, Zhou H-X. Effect of macromolecular crowding on protein binding stability: modest stabilization and significant biological consequences. Biophys J. 2009;97:906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qin S, Zhou H-X. Atomistic modeling of macromolecular crowding predicts modest increases in protein folding and binding stability. Biophys J. 2009;97:12–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hassan MM, Martin AD, Thordarson P. Macromolecular crowding and hydrophobic effects on Fmoc-diphenylalanine hydrogel formation in PEG:water mixtures. J Mater Chem B. 2015;3:9269–76.

    Article  CAS  PubMed  Google Scholar 

  14. Satyam A, Kumar P, Fan X, Gorelov A, Rochev Y, Joshi L, et al. Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Adv Mater. 2014;26:3024–34.

    Article  CAS  PubMed  Google Scholar 

  15. Ng WL, Goh MH, Yeong WY, Naing MW. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs. Biomater Sci. 2018;6:562–74.

    Article  CAS  PubMed  Google Scholar 

  16. Myhrvold C, Dai M, Silver PA, Yin P. Isothermal self-assembly of complex DNA structures under diverse and biocompatible conditions. Nano Lett. 2013;13:4242–8.

    Article  CAS  PubMed  Google Scholar 

  17. Hata Y, Kojima T, Koizumi T, Okura H, Sakai T, Sawada T, et al. Enzymatic synthesis of cellulose oligomer hydrogels composed of crystalline nanoribbon networks under macromolecular crowding conditions. ACS Macro Lett. 2017;6:165–70.

    Article  CAS  Google Scholar 

  18. Hata Y, Sawada T, Serizawa T. Effect of solution viscosity on the production of nanoribbon network hydrogels composed of enzymatically synthesized cellulose oligomers under macromolecular crowding conditions. Polym J. 2017;49:575–81.

    Article  CAS  Google Scholar 

  19. Tortora L, Lavrentovich OD. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. Proc Natl Acad Sci USA. 2011;108:5163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park H-S, Kang S-W, Tortora L, Kumar S, Lavrentovich OD. Condensation of self-assembled lyotropic chromonic liquid crystal Sunset Yellow in aqueous solutions crowded with polyethylene glycol and doped with salt. Langmuir 2011;27:4164–75.

    Article  CAS  PubMed  Google Scholar 

  21. Onuchic JN, Luthey-Schulten Z, Wolynes PG. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48:545–600.

    Article  CAS  PubMed  Google Scholar 

  22. Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science. 2012;338:1042–6.

    Article  CAS  PubMed  Google Scholar 

  23. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.

  24. Flory PJ. Statistical mechanics of chain molecules. New York: Interscience; 1969.

  25. de Gennes P-G. Scaling concepts in polymer physics. Ithaca: Cornell University Press; 1979.

  26. Fuchs M, Schweizer KS. Structure of colloid-polymer suspensions. J Phys Condens Matter. 2002;14:R239–R269.

    Article  CAS  Google Scholar 

  27. Maruyama T, Restu WK. Intracellular self-assembly of supramolecular gelators to selectively kill cells of interest. Polym J. 2020;52:883–9.

    Article  CAS  Google Scholar 

  28. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59:617–30.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Sarma B, Evans JMB, Myerson AS. Pharmaceutical crystallization. Cryst Growth Des. 2011;11:887–95.

    Article  CAS  Google Scholar 

  30. Diao Y, Helgeson ME, Myerson AS, Hatton TA, Doyle PS, Trout BL. Controlled nucleation from solution using polymer microgels. J Am Chem Soc. 2011;133:3756–9.

    Article  CAS  PubMed  Google Scholar 

  31. Xu S, Dai W-G. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453:36–43.

    Article  CAS  PubMed  Google Scholar 

  32. Mandal T, Huang W, Mecca JM, Getchell A, Porter WW III, Larson RG. A framework for multi-scale simulation of crystal growth in the presence of polymers. Soft Matter. 2017;13:1904–13.

    Article  CAS  PubMed  Google Scholar 

  33. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Özdemir C, Güner A. Solubility profiles of poly(ethylene glycol)/solvent systems, I: qualitative comparison of solubility parameter approaches. Eur Polym J. 2007;43:3068–93.

    Article  Google Scholar 

  35. Papanu JS, Soane (Soong) DS, Bell AT, Hess DW. Transport models for swelling and dissolution of thin polymer films. J Appl Polym Sci. 1989;38:859–85.

    Article  CAS  Google Scholar 

  36. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 2008;41:5379–84.

    Article  CAS  Google Scholar 

  37. Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M. SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states. Macromolecules. 2009;42:6245–52.

    Article  CAS  Google Scholar 

  38. Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M. Structure characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules. 2009;42:1344–51.

    Article  CAS  Google Scholar 

  39. Sakai T, Katashima T, Matsushita T, Chung U. Sol-gel transition behavior near critical concentration and connectivity. Polym J. 2016;48:629–34.

    Article  CAS  Google Scholar 

  40. Hayashi K, Okamoto F, Hoshi S, Katashima T, Zujur DC, Li X, et al. Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat Biomed Eng. 2017;1:0044.

    Article  CAS  Google Scholar 

  41. Katashima T, Sakurai H, Chung U, Sakai T. Dilution effect on the cluster growth near the gelation threshold. Nihon Reoroji Gakkaishi. 2019;47:61–6.

    Article  CAS  Google Scholar 

  42. Yoshikawa Y, Sakumichi N, Chung U, Sakai T. Connectivity dependence of gelation and elasticity in AB-type polymerization: an experimental comparison of the dynamic process and stoichiometrically imbalanced mixing. Soft Matter. 2019;15:5017–25.

    Article  CAS  PubMed  Google Scholar 

  43. Fujinaga I, Yasuda T, Asai M, Chung U, Katashima T, Sakai T. Cluster growth from a dilute system in a percolation process. Polym J. 2020;52:289–97.

    Article  CAS  Google Scholar 

  44. Linegar KL, Adeniran AE, Kostko AF, Anisimov MA. Hydrodynamic radius of polyethylene glycol in solution obtained by dynamic light scattering. Colloid J. 2010;72:279–81.

    Article  CAS  Google Scholar 

  45. Anwar J, Boateng PK. Computer simulation of crystallization from solution. J Am Chem Soc. 1998;120:9600–4.

    Article  CAS  Google Scholar 

  46. Erdemir D, Lee AY, Myerson AS. Nucleation of crystals from solution: classical and two-step models. Acc Chem Res. 2009;42:621–9.

    Article  CAS  PubMed  Google Scholar 

  47. Stenger PC, Isbell SG, Zasadzinski JA. Molecular weight dependence of the depletion attraction and its effects on the competitive adsorption of lung surfactant. Biochim Biophys Acta - Biomembr. 2008;1778:2032–40.

    Article  CAS  Google Scholar 

  48. Fuchs M, Schweizer KS. Macromolecular theory of solvation and structure in mixtures of colloids and polymers. Phys Rev E. 2001;64:021514.

    Article  CAS  Google Scholar 

  49. Li X, Noritomi T, Sakai T, Gilbert EP, Shibayama M. Dynamics of critical clusters synthesized by end-coupling of four-armed poly(ethylene glycol)s. Macromolecules. 2019;52:5086–94.

    Article  CAS  Google Scholar 

  50. Pirttimäki J, Laine E. The transformation of anhydrate and hydrate forms of caffeine at 100% RH and 0% RH. Eur J Pharm Sci. 1994;1:203–8.

    Article  Google Scholar 

  51. Edwards HGM, Lawson E, De Matas M, Shields L, York P. Metamorphosis of caffeine hydrate and anhydrous caffeine. J Chem Soc Perkin Trans. 1997;2:1985–90.

    Article  Google Scholar 

  52. Lehmann CW, Stowasser F. The crystal structure of anhydrous β-caffeine as determined from X-ray powder-diffraction data. Chem Eur J. 2007;13:2908–11.

    Article  CAS  PubMed  Google Scholar 

  53. Shumilin I, Bogoslavsky B, Harries D. Stressing crystals with solutes: effects of added solutes on crystalline caffeine and their relevance to determining transfer free energies. Colloids Surf A Physicochem Eng Asp. 2020;599:124889.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI, grant number JP20J01280 for YH. YH is grateful to JSPS for the Research Fellowship for Young Scientists. The XRD experiment was performed at SAXS-U (General User Program of Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo) located in Ibaraki Quantum Beam Research Center, Tokai, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuuki Hata or Takamasa Sakai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hata, Y., Li, X., Chung, Ui. et al. Molecular crystallization directed by polymer size and overlap under dilute and crowded macromolecular conditions. Polym J 53, 633–642 (2021). https://doi.org/10.1038/s41428-021-00461-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00461-7

This article is cited by

Search

Quick links