Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Photo-responsive polymer micelles from o-nitrobenzyl ester-based amphiphilic block copolymers synthesized by mechanochemical solid-state copolymerization

Abstract

Polymer micelles with a tunable drug release would be suitable for the concept of drug delivery system. We constructed photo-responsive polymer micelles from amphiphilic block copolymers. The polymer micelles were synthesized by mechanochemical solid-state copolymerization of poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) and 4,5-dimethoxy-2-nitrobenzyl methacrylate as a photosensitive moiety. The above mechanochemical solid-state copolymerization was performed by vibratory-ball milling at 30 Hz in a nitrogen atmosphere with the use of an agate vessel and an agate ball to yield amphiphilic block copolymers (PHPMA-b-PDNMA). Spherical polymer micelles were formed by the self-assembly of PHPMA-b-PDNMA. The diameter of the PHPMA-b-PDNMA micelles was in the range of 130-200 nm. The PHPMA-b-PDNMA micelles loaded with the antitumor drug 5-fluorouracil (5-FU) showed photo irradiation induced time-dependent release of 5-FU with an associated decrease of micellar size. The drug release profile of the PHPMA-b-PDNMA micelles followed a clear sigmoid curve. Our approach provides a controlled drug release system through the use of photo-responsive polymer micelles, accompanied by the gradual decrease of micellar size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li KC, Pandit SD, Guccione S, Bednarski MD. Molecular imaging applications in nanomedicine. Biomed Microdevices. 2004;6:113–6.

    CAS  PubMed  Google Scholar 

  2. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–30.

    CAS  PubMed  Google Scholar 

  3. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–30.

    CAS  PubMed  Google Scholar 

  4. Skinner SA, Tutton PJM, O’Brien PE. Microvascular architecture of experimental colon tumors in the rat. Cancer Res. 1990;50:2411–7.

    CAS  PubMed  Google Scholar 

  5. Suzuki M, Hori K, Abe I, Saito S, Sato H. A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II. J Natl Cancer Inst. 1981;67:663–9.

    CAS  PubMed  Google Scholar 

  6. Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carr Syst. 1989;6:193–210.

    CAS  Google Scholar 

  7. Iwai K, Maeda H, Konno T. Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer Res. 1984;44:2115–21.

    CAS  PubMed  Google Scholar 

  8. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  9. Cammasa S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Controlled Release. 1997;48:157–64.

    Google Scholar 

  10. Chung JE, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J Controlled Release. 2000;65:93–103.

    CAS  Google Scholar 

  11. Liang X, Liu F, Kozlovskaya V, Palchak Z, Kharlampieva E. Thermoresponsive micelles from double LCST-Poly(3-methyl-N-vinylcaprolactam) block copolymers for cancer therapy. ACS Macro Lett. 2015;4:308–11.

    CAS  Google Scholar 

  12. Hassanzadeh F, Farzan M, Varshosaz J, Khodarahmi GA, Maaleki S, Rostami M. Poly (ethylene-co-vinyl alcohol)-based polymeric thermo-responsive nanocarriers for controlled delivery of epirubicin to hepatocellular carcinoma. Res Pharm Sci. 2017;12:107–18.

    PubMed  PubMed Central  Google Scholar 

  13. Zhao Y. Photocontrollable block copolymer micelles: what can we control? J Mater Chem. 2009;19:4887–95.

    CAS  Google Scholar 

  14. Ercole F, Davis TP, Evans RA. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem. 2010;1:37–54.

    CAS  Google Scholar 

  15. Schumers JM, Fustinand CA, Gohy JF. Light-responsive block copolymers. Macromol Rapid Commun. 2010;31:1588–607.

    CAS  PubMed  Google Scholar 

  16. Pasparakis G, Manouras T, Argitis P, Vamvakaki M. Photodegradable polymers for biotechnological applications. Macromol Rapid Commun. 2012;33:183–98.

    CAS  PubMed  Google Scholar 

  17. Zhao Y. Light-responsive block copolymer micelles. Macromolecules. 2012;45:3647–57.

    CAS  Google Scholar 

  18. Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release. 2000;69:43–52.

    CAS  PubMed  Google Scholar 

  19. Gao Z, Fain HD, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm. 2004;1:317–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Xia H, Wang J, Li Y. High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. J Control Release. 2009;139:31–9.

    CAS  PubMed  Google Scholar 

  21. Wu P, Jia Y, Qu F, Sun Y, Wang P, Zhang K, et al. Ultrasound-responsive polymeric micelles for sonoporation-assisted site-specific therapeutic action. ACS Appl Mater Interfaces. 2017;9:25706–16.

    CAS  PubMed  Google Scholar 

  22. Bae Y, Nishiyama N, Fukushima S, Koyama H, Matsumura Y, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem. 2005;16:122–30.

    CAS  Google Scholar 

  23. Convertine AJ, Diab C, Prieve M, Paschal A, Hoffman AS, Johnson PH, et al. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules. 2010;11:2904–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kondo S, Yamamoto K, Sawama Y, Sasai Y, Yamauchi Y, Kuzuya M. Characterization of novel pH-sensitive polymeric micelles prepared by the self-assembly of amphiphilic block copolymer with poly-4-vinylpyridine block synthesized by mechanochemical solid-state polymerization. Chem Pharm Bull. 2011;59:1200–2.

    CAS  Google Scholar 

  25. Kondo S, Asano Y, Koizumi N, Tatematsu K, Sawama Y, Sasai Y, et al. Novel pH-responsive polymeric micelles prepared through self-assembly of amphiphilic block copolymer with poly-4-vinylpyridine block synthesized by mechanochemical solid-state polymerization. Chem Pharm Bull. 2015;63:489–94.

    Google Scholar 

  26. Hiruta Y, Kanda Y, Katsuyama N, Kanazawa H. Dual temperature- and pH-responsive polymeric micelle for selective and efficient two-step doxorubicin delivery. RSC Adv. 2017;7:29540–49.

    CAS  Google Scholar 

  27. Li Q, Yao W, Yu X, Zhang B, Dong J, Jin Y. Drug-loaded pH-responsive polymeric micelles: simulations and experiments of micelle formation, drug loading and drug release. Colloids Surf B Biointerfaces. 2017;158:709–16.

    CAS  PubMed  Google Scholar 

  28. Zhao H, Sterner ES, Coughlin EB, Theato P. o-nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules. 2012;45:1723–36.

    CAS  Google Scholar 

  29. Zhao Y. Rational design of light-controllable polymer micelles. Chem Rec. 2007;7:286–94.

    CAS  PubMed  Google Scholar 

  30. Gohy J-F, Zhao Y. Photo-responsive block copolymer micelles: design and behavior. Chem Soc Rev. 2013;42:7117–29.

    CAS  PubMed  Google Scholar 

  31. Abreu CMR, Mendonça PV, Serra AC, Coelho JFJ, Popov AV, Guliashvili T. Accelerated ambient-temperature ATRP of methyl acrylate in alcohol-water solutions with a mixed transition-metal catalyst system. Macromol Chem Phys. 2012;213:1677–87.

    CAS  Google Scholar 

  32. Ding M, Jiang X, Zhang L, Cheng Z, Zhu X. Recent progress on transition metal catalyst separation and recycling in ATRP. Macromol Rapid Commun. 2015;36:1702–21.

    CAS  PubMed  Google Scholar 

  33. Frazer L. Radical departure: polymerization does more with less. Environ Health Perspect. 2007;115:A258–61.

    PubMed  PubMed Central  Google Scholar 

  34. Kuzuya M, Kondo S, Noguchi A. A new development of mechanochemical solid-state polymerization of vinyl monomers: prodrug syntheses and its detailed mechanistic study. Macromolecules. 1991;24:4047–53.

    CAS  Google Scholar 

  35. Kuzuya M, Kondo S, Noguchi A, Noda N. Mechanistic study on mechanochemical polymerization of acrylamide. J Polym Sci Part A Polym Chem. 1991;29:489–94.

    CAS  Google Scholar 

  36. Kuzuya M, Kondo S, Noguchi A, Noda N. Nature of mechanoradical formation and reactivity with oxygen in methacrylic vinyl polymers. J Polym Sci Part B Polym Phys. 1992;30:97–103.

    CAS  Google Scholar 

  37. Kondo S, Sasai Y, Hosaka S, Ishikawa T, Kuzuya M. Kinetic analysis of the mechanolysis of polymethylmethacrylate in the course of vibratory ball milling at various mechanical energy. J Polym Sci Part A Polym Chem. 2004;42:4161–67.

    CAS  Google Scholar 

  38. Kuzuya M, Yamauchi Y, Kondo S. Mechanolysis of glucose-based polysaccharides as studied by electron spin resonance. J Phys Chem B. 1999;103:8051–9.

    CAS  Google Scholar 

  39. Sasai Y, Yamauchi Y, Kondo S, Kuzuya M. Nature of mechanoradical formation of substituted celluloses as studied by electron spin resonance. Chem Pharm Bull. 2004;52:339–44.

    CAS  Google Scholar 

  40. Doi N, Sasai Y, Yamauchi Y, Adachi T, Kuzuya M, Kondo S. Kinetic analysis of mechanoradical formation during the mechanolysis of dextran and glycogen. Beilstein J Org Chem. 2017;13:1174–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kondo S, Hatakeyama I, Hosaka S, Kuzuya M. Mechanochemical solid-state polymerization (X): the influence of copolymer structure in copolymeric prodrugs on the nature of drug release. Chem Pharm Bull. 2000;48:1882–5.

    CAS  Google Scholar 

  42. Kondo S, Mori H, Sasai Y, Kuzuya M. Conventional synthesis of amphiphilic block copolymer utilized for polymeric micelle by mechanochemical solid-state polymerization. Chem Pharm Bull. 2007;55:389–92.

    CAS  Google Scholar 

  43. Doi N, Sasai Y, Yamauchi Y, Adachi T, Kuzuya M, Kondo S. Development of novel polymeric prodrugs synthesized by mechanochemical solid-state copolymerization of hydroxyethylcellulose and vinyl monomers. Chem Pharm Bull. 2015;63:992–7.

    CAS  Google Scholar 

  44. Doi N, Sasai Y, Yamauchi Y, Adachi T, Kuzuya M, Kondo S. A novel polymeric prodrugs synthesized by mechanochemical solid-state copolymerization of glucose-based polysaccharides and vinyl monomers. Int J Pharm Sci Invent. 2017;6:38–46.

    CAS  Google Scholar 

  45. Duncan R. The drawing era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    CAS  PubMed  Google Scholar 

  46. Kopeček J, Kopečková P, Minko T, Lu Z. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm. 2000;50:61–81.

    PubMed  Google Scholar 

  47. Říhová B, Kubáčková K. Clinical implications of N-(2-hydroxypropyl)methacrylamide copolymers. Curr Pharm Biotechnol. 2003;4:311–22.

    PubMed  Google Scholar 

  48. Talelli M, Rijcken CJF, van Nostrum CF, Storm G, Hennink WE. Micelles based on HPMA copolymers. Adv Drug Deliv Rev. 2010;62:231–9.

    CAS  PubMed  Google Scholar 

  49. Kim K, Kwon S, Park JH, Chung H, Jeong SY, Kwon IC, et al. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates. Biomacromolecules. 2005;6:1154–8.

    CAS  PubMed  Google Scholar 

  50. Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009;135:259–67.

    CAS  PubMed  Google Scholar 

  51. Stankovich S, Piner RD, Nguyen S-BT, Ruoff RS. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon. 2006;44:3342–47.

    CAS  Google Scholar 

  52. Park C, Lee IH, Lee S, Song Y, Rhue M, Kim C. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proc Natl Acad Sci USA. 2006;103:1199–203.

    CAS  PubMed  Google Scholar 

  53. Li X, Mya KY, Ni X, He C, Leong KW, Li J. Dynamic and static light scattering studies on self-aggregation behavior of biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) triblock copolymers in aqueous solution. J Phys Chem B. 2006;110:5920–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the OGAWA Science and Technology Foundation. We also give thanks to Springer Nature Author Services for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Kondo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doi, N., Yamauchi, Y., Ikegami, R. et al. Photo-responsive polymer micelles from o-nitrobenzyl ester-based amphiphilic block copolymers synthesized by mechanochemical solid-state copolymerization. Polym J 52, 1375–1385 (2020). https://doi.org/10.1038/s41428-020-0387-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0387-9

This article is cited by

Search

Quick links