Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

N-isopropylacrylamide and spiropyran copolymer-grafted fluorescent carbon nanoparticles with dual responses to light and temperature stimuli

Abstract

The fluorescent nanocomposites of carbon nanoparticles grafted with N-isopropylacrylamide and spiropyran copolymers (f-CNP-g-poly(NIPAM-co-SP)) were successfully synthesized via reversible addition-fragmentation chain transfer polymerization. The synthesized f-CNP-g-poly(NIPAM-co-SP) nanocomposites could be well dissolved in water and retain the fluorescence of carbon nanoparticles, which could simultaneously fluoresce blue-green and red. The blue-green and red fluorescence of the f-CNP-g-poly(NIPAM-co-SP) nanocomposites dissolved in water could be reversibly switched under UV and visible light stimuli. When the temperature increased from room temperature (20 °C) to 38 °C, the blue-green fluorescence intensity decreased, the red fluorescence intensity increased, and the average hydrodynamic diameter of the f-CNP-g-poly(NIPAM-co-SP) nanocomposites increased due to aggregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG. Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater. 2011;21:1027–31.

    Article  CAS  Google Scholar 

  2. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun. 2012;48:7955–7.

    Article  CAS  Google Scholar 

  3. Liang Q, Ma W, Shi Y, Li Z, Yang X. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon. 2013;60:421–8.

    Article  CAS  Google Scholar 

  4. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127:17604–5.

    Article  CAS  Google Scholar 

  5. Luo K, Jiang XY. Fluorescent carbon quantum dots with Fe(III/II) irons as bridge for the detection of ascorbic acid and H2O2. J Fluoresc. 2019;29:769–77.

    Article  CAS  Google Scholar 

  6. Tabaraki R, Abdi O. Microwave assisted synthesis of N-doped carbon dots: an easy, fast and cheap sensor for determination of aspartic acid in sport supplements. J Fluoresc. 2019;29:751–6.

    Article  CAS  Google Scholar 

  7. Tang J, Kong B, Wu H, Xu M, Wang Y, Wang Y, et al. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv Mater. 2013;25:6569–74.

    Article  CAS  Google Scholar 

  8. Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, et al. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192–9.

    Article  CAS  Google Scholar 

  9. Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH Sensing. Chem Mater. 2014;26:3104–12.

    Article  CAS  Google Scholar 

  10. Shi W, Li X, Ma H. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angew Chem Int Ed. 2012;51:6432–5.

    Article  CAS  Google Scholar 

  11. Jin X, Sun X, Chen G, Ding L, Li Y, Liu Z, et al. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells. Carbon. 2015;81:388–95.

    Article  CAS  Google Scholar 

  12. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG. et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129:11318–9.

    Article  CAS  Google Scholar 

  13. Wan X, Li S, Zhuang L, Tang J. L-Tryptophan-capped carbon quantum dots for the sensitive and selective fluorescence detection of mercury ion in aqueous solution. J Nanopart Res. 2016;18:202

    Article  Google Scholar 

  14. Liao B, Long P, He BQ, Yi SJ, Liu QQ, Wang RX. Surface grafting of fluorescent carbon nanoparticles with polystyrene via atom transfer radical polymerization. Carbon. 2014;73:155–62.

    Article  CAS  Google Scholar 

  15. Liao B, Wang W, Long P, He B, Li F, Liu Q. Synthesis of fluorescent carbon nanoparticles grafted with polystyrene and their fluorescent fibers processed by electrospinning. RSC Adv. 2015;4:57683–90.

    Article  Google Scholar 

  16. Wang JY, Ma XF, Wei L, Zhu X, Zhu YH, Wang G, et al. Construction of high-strength p(HEMA-co-AA) fluorescent hydrogels based on modified carbon dots as chemically crosslinkers. Colloid Polym Sci. 2018;296:745–52.

    Article  CAS  Google Scholar 

  17. Sreenath PR, Mandal S, Singh S, Das P, Bhowmickc AK, Kumar KD. Remarkable synergetic effect by in-situ covalent hybridization of carbon dots with graphene oxide and carboxylated acrylonitrile butadiene rubber. Polymer. 2019;175:283–93.

    Article  CAS  Google Scholar 

  18. Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches. Chem Rev. 2000;100:1741–54.

    Article  CAS  Google Scholar 

  19. Klajn R. Spiopyran-based dynamic materials. Chem Soc Rev. 2014;43:148–84.

    Article  CAS  Google Scholar 

  20. Fukaminato T. Single-molecule fluorescence photoswitching: design and synthesis of photoswitchable fluorescent molecules. J Photochem Photobiol C Photochem Rev. 2011;12:177–208.

    Article  CAS  Google Scholar 

  21. Liao B, Chen J, Huang HW, Li XF, He BQ. Gold nanocluster-based light-controlled fluorescence molecular switch. J Mater Chem. 2011;21:5867–9.

    Article  CAS  Google Scholar 

  22. Liao B, Long P, He BQ, Yi SJ, Ou BL, Shen SH, et al. Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles. J Mater Chem C. 2013;1:3716–21.

    Article  CAS  Google Scholar 

  23. Liao B, Wang W, Long P, Deng X, He B, Liu Q. et al. The carbon nanoparticles grafted with copolymers of styrene and spiropyran with reversibly photoswitchable fluorescence. Carbon. 2015;91:30–7.

    Article  CAS  Google Scholar 

  24. Liao B, Lv H, Deng XT, He B, Liu Q. Spiropyran-modified silicon quantum dots with reversibly switchable photoluminescence. J Nanopart Res. 2017;19:265

    Article  Google Scholar 

  25. Lang XL, Patrick AD, Hammouda B, Hore MJA. Chain terminal group leads to distinct thermoresponsive behaviors of linear PNIPAM and polymer analogs. Polymer. 2018;145:137–47.

    Article  CAS  Google Scholar 

  26. Kong F, Lin MQ, Qiu T. Multi-functional ratiometric fluorescent chemosensors of poly(Nisopropylacrylamide) containing rhodamine 6G and 1,8- naphthalimide moieties. Polymer. 2018;151:117–24.

    Article  CAS  Google Scholar 

  27. Zhou YY, Wu PY. Block length-dependent phase transition of poly(N-isopropylacrylamide)-bpoly(2-isopropyl-2-oxazoline) diblock copolymer in water. Polymer. 2018;153:250–61.

    Article  CAS  Google Scholar 

  28. Wang J, Huang N, Peng Q, Cheng XY, Li WK. Temperature/pH dual-responsive and luminescent drug carrier based on PNIPAM-MAA/lanthanide-polyoxometalates for controlled drug delivery and imaging in HeLa cells. Mater Chem Phys. 2020;239:121994.

    Article  CAS  Google Scholar 

  29. Shiraishi Y, Miyamoto R, Hirai T. Spiropyran-conjugated thermoresponsive copolymer as a colorimetric thermometer with linear and reversible color change. Org Lett. 2009;11:1571–74.

    Article  CAS  Google Scholar 

  30. Lee BG, Kim JH, Cho MJ, Lee SH, Choi DH. Photochromic behavior of spiropyran in the photoreactive polymer containing chalcone moieties. Deys Pigment. 2004;61:235–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (project nos. 21776218, 51778266, and 81701837), the Natural Science Foundation of Hunan Province (project no. 2020JJ4303) and the Open Fund of the Beijing Key Laboratory for Optical Materials and Photonic Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Liao or Benqiao He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, B., Liu, X., Liao, S. et al. N-isopropylacrylamide and spiropyran copolymer-grafted fluorescent carbon nanoparticles with dual responses to light and temperature stimuli. Polym J 52, 1289–1298 (2020). https://doi.org/10.1038/s41428-020-0383-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0383-0

Search

Quick links