Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Curing acceleration of cyanate ester resin by a phenolic compound having a tertiary amino group at the ortho-position

Abstract

To develop a novel organic catalyst that can effectively cure cyanate ester resins, the effects of incorporating various phenolic compounds on the curing of bisphenol A dicyanate (BADCY) was investigated. Differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy analyses revealed that o-(dimethylamino)methylphenol (o-DAMP) was a highly effective catalyst for accelerating the curing of BADCY, and the addition of o-DAMP reduced the final curing temperature of BADCY to 180 °C. The promoting effect of o-DAMP was found to be due to the presence of an acidic phenolic OH group and a basic (dimethylamino)methyl group at the ortho-positions of the molecule. The addition of o-DAMP improved the modulus, strength and fracture toughness (KIC) of the cured BADCY resins. The mechanical and thermal properties of the cured resins could be adjusted by changing the amount of o-DAMP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sato H, Nabae Y, Hayakawa T, Kakimoto M. Synthesis and characterization of novel arylene cyanate resins. J Photopolym Sci Technol. 2013;26:373–6.

    Article  CAS  Google Scholar 

  2. Zhang X, Wang F, Zhu Y, Qi H. Cyanate ester composites containing surface functionalized BN particles with grafted hyperpolyarylamide exhibiting desirable thermal conductivities and a low dielectric constant. RSC Adv. 2019;9:36424–33.

    Article  CAS  Google Scholar 

  3. Lin Y, Song M. Effect of polyhedral oligomeric silsesquioxane nanoparticles on thermal decomposition of cyanate ester resin. React Funct Polym. 2018;129:58–63.

    Article  CAS  Google Scholar 

  4. Ma P, Dai C, Jiang S. Thioetherimide-modified cyanate ester resin with better molding performance for glass fiber reinforced composites. Polymers. 2019;11:1458.

    Article  CAS  Google Scholar 

  5. Zhang Z, Xu W, Yuan L, Guan Q, Liang G, Gu A. Flame-retardant cyanate ester resin with suppressed toxic volatiles based on environmentally friendly halloysite nanotube/graphene oxide hybrid. J Appl Polym Sci. 2018;135:46587.

    Article  Google Scholar 

  6. Matallana A, Ibarra E, López I, Andreu J, Gerate JI, Jordà X, et al. Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects. Renew Sustain Energy Rev. 2019;113:109264.

    Article  CAS  Google Scholar 

  7. Fang T, Shimp DA. Polycyanate esters: science and applications. Prog Polym Sci. 1995;20:61–118.

    Article  CAS  Google Scholar 

  8. Fang Z, Wang J, Gu A. Structure and properties of multiwalled carbon nanotubes/cyanate ester composites. Polym Eng Sci. 2006;46:670–9.

    Article  CAS  Google Scholar 

  9. Wang J, Liang G, Zhao W, Lü S, Yan H. Modification of bisphenol A dicyanate ester by carboxyl-terminated liquid butadiene-acrylonitrile and its composites. Polym Eng Sci. 2006;46:581–7.

    Article  CAS  Google Scholar 

  10. Gu A. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties. Comp Sci Technol. 2006;66:1749–55.

    Article  CAS  Google Scholar 

  11. Liang K, Li G, Toghiani H, Koo JH, Pittman CU. Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: synthesis and characterization. Chem Mater. 2006;18:301–12.

    Article  CAS  Google Scholar 

  12. Anuradha G, Sarojadevi M. Synthesis and characterization of poly(arylene ether) containing cyanate ester networks. J Polym Res. 2008;15:507–14.

    Article  CAS  Google Scholar 

  13. Huang P, Gu A, Liang G, Yuan L. Curing behavior and dielectric properties of hyperbranched poly(phenylene oxide)/cyanate ester resins. J Appl Polym Sci. 2011;121:2113–22.

    Article  CAS  Google Scholar 

  14. Lin C, Yuan L, Gu A, Chen F, Liang G. High performance cyanate ester resins/reactive porous polymeric microsphere systems with low-temperature processability. Compos Sci Technol. 2013;85:148–55.

    Article  CAS  Google Scholar 

  15. Ma J, Lei X, Tian D, Yuan L, Liao C. Curing behavior and network formation of cyanate ester resin/polyethylene glycol. J Appl Polym Sci. 2015;132:41841.

    Article  Google Scholar 

  16. Chen X, Liang G, Gu A, Yuan L. Flame retarding cyanate ester resin with low curing temperature, high thermal resistance, outstanding dielectric property, and low water absorption for high frequency and high speed printed circuit broads. Ind Eng Chem Res. 2015;54:1806–15.

    Article  CAS  Google Scholar 

  17. Kobayashi T, Isono M, Oyama T, Takahashi A. High performance cyanate ester resins modified with epoxy resins using novel catalyst. J Network Polym, Jpn. 2012;33:130–9.

    CAS  Google Scholar 

  18. Liang G, Ren P, Zhang Z, Lu T. Effect of the epoxy molecular weight on the properties of a cyanate ester/epoxy resin system. J Appl Polym Sci. 2006;101:1744–50.

    Article  CAS  Google Scholar 

  19. Wang MW, Jeng RJ, Lin CH. Origin of the rapid trimerization of cyanate ester in a benzoxazine/cyanate ester blend. Macromolecules. 2015;48:2417–21.

    Article  Google Scholar 

  20. Johansson A, Löfberg C, Antonsson M, von Unge S, Hayes MA, Judkins R, et al. Discovery of (3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone (AZD1979), a melanin concentrating hormone receptor 1 (MCHr1) antagonist with favorable physicochemical properties. J Med Chem. 2016;59:2497–511.

    Article  CAS  Google Scholar 

  21. Bauer M, Bauer J, Kühn G. Kinetics and modelling of thermal polycyclotrimerization of aromatic dicyanates. Acta Polym. 1986;37:715–9.

    Article  CAS  Google Scholar 

  22. Iijima T, Katsurayama S, Fukuda W, Tomoi M. Modification of cyanate ester resin by poly(ethylene phthalate) and related copolyesters. J Appl Polym Sci. 2000;76:208–19.

    Article  CAS  Google Scholar 

  23. Fujita H, Hayakawa N, Kunishima M. Study of the reactivities of acid-catalyzed O-benzylating reagents based on structural isomers of 1,3,5-triazine. J Org Chem. 2015;80:11200–5.

    Article  CAS  Google Scholar 

  24. Lin K-F, Shyu J-Y. Early cure behavior of a liquid dicyanate ester resin. J Polym Sci: Part A: Polym Chem. 2001;39:3085–92.

    Article  CAS  Google Scholar 

  25. Chang J-Y, Hong J-L. Polycyanurates modified with hydroxyl-terminated or cyanated poly(ether sulfone). Polymer. 2001;42:1525–32.

    Article  CAS  Google Scholar 

  26. Kim M, Ko H, Park S-M. Synergistic effects of amine-modified ammonium polyphosphate on curing behaviors and flame retardation properties of epoxy composites. Compos B: Eng. 2019;170:19–30.

    Article  CAS  Google Scholar 

  27. Zhang J, Xu S. Effect of chain length of cardanol-based phenalkamines on mechanical properties of air-dried and heat-cured epoxies. Mater Express. 2019;9:337–43.

    Article  CAS  Google Scholar 

  28. Khorshidi S, Karkhaneh A, Bonakdar S, Omidian M. High‐strength functionalized pectin/fibroin hydrogel with tunable properties: A structure–property relationship study. J Appl Polym Sci. 2020;137:48859.

    Article  CAS  Google Scholar 

  29. Ochi M, Yamashita K, Yoshizumi M, Shimbo M. Internal stress in epoxide resin networks containing biphenyl structure. J Appl Polym Sci. 1989;38:789–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Oyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izu, K., Tokoro, Y. & Oyama, T. Curing acceleration of cyanate ester resin by a phenolic compound having a tertiary amino group at the ortho-position. Polym J 52, 1245–1252 (2020). https://doi.org/10.1038/s41428-020-0380-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0380-3

Search

Quick links