Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Conjugate substitution reaction of α-(substituted methyl)acrylates in polymer chemistry

Abstract

The nucleophilic conjugate substitution of α-(substituted methyl)acrylate is a very convenient reaction that occurs at ambient temperature with a variety of nucleophiles, such as amines, thiols, phenols, enols, and carboxylic acids. The reaction is quantitative when the nucleophile and leaving group have distinctly different acidities, whereas it becomes dynamic and reversible if their acidities are similar. This review describes the fundamentals and applications of conjugate substitution reactions in polymer chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

References

  1. Kohsaka Y, Yamaguchi E, Kitayama T. Anionic alternating copolymerization of α-arylacrylates with methyl methacrylate: effect of monomer sequence on fluorescence. J Polym Sci Part A-Polym Chem. 2014;52:2806–14.

    CAS  Google Scholar 

  2. Yamada B, Kobatake S. Radical polymerization, co-polymerization, and chain transfer of α-substituted acrylic esters. Prog Polym Sci. 1994;19:1089–152.

    CAS  Google Scholar 

  3. Kodaira T, Liu QQ, Urushisaki M. Cyclopolymerization 24. Cyclopolymerizability of an unconjugated triene with functional groups with no homopolymerization tendency: radical polymerizations of N,N-diallyl-2-(methoxycarbonyl)allylamine. Macromol Chem Phys. 1997;198:3089–104.

    CAS  Google Scholar 

  4. Habaue S, Uno T, Okamoto Y. Stereospecific anionic polymerization of ethyl α-(1-pyrrolidinylmethyl)acrylate. Macromolecules. 1997;30:3125–6.

    CAS  Google Scholar 

  5. Yamada B, Konosu O. Control of branched structure of radical polymer by addition-fragmentation chain transfer - preparation of star polymer. Kobunshi Ronbunshu. 1997;54:723–30.

    CAS  Google Scholar 

  6. Onen A, Yagci Y. The effect of the heteroatom moiety of allylic salts on the addition fragmentation initiation of cationic polymerization. Macromole Chem Phys. 2001;202:1950–4.

    CAS  Google Scholar 

  7. Yilmaz F, Sudo A, Endo T. Allyl sulfonium salt as a novel initiator for active cationic polymerization of epoxide by shooting with radicals species. J Polym Sci Part A-Polym Chem. 2010;48:4178–83.

    CAS  Google Scholar 

  8. Kashman Y, Fishelson L, Ne’eman I. N-acyl-2-methylene-β-alanine methyl esters from the sponge Fasciospongia cavernosa. Tetrahedron. 1973;29:3655–7.

    CAS  Google Scholar 

  9. Yunker MB, Scheuer PJ. α-oxygenated fatty acids occurring as amides of 2-methylene-β-alanine in a marine sponge. Tetrahed Lett. 1978;19:4651–2.

    Google Scholar 

  10. Holm A, Scheuer PJ. Synthesis of α-methylene-β-alanine and one of its naturally occurring α-ketomides. Tetrahed Lett. 1980;21:1125–8.

    CAS  Google Scholar 

  11. Kohsaka Y, Matsumoto Y, Kitayama T. α-(Aminomethyl)acrylate: polymerization and spontaneous post-polymerization modification of beta-amino acid ester for a pH/temperature-responsive material. Polym Chem. 2015;6:5026–9.

    CAS  Google Scholar 

  12. Kohsaka Y, Kitaura T, Kitayama T. Precise synthesis of stereoregular polymethacrylates with end-functionality. Kobunshi Ronbunshu. 2015;72:385–94.

    CAS  Google Scholar 

  13. Kitaura T, Kitayama T. Anionic polymerization of methyl methacrylate with the aid of Lithium trimethylsilanolate (Me3SiOLi) - superior control of isotacticity and molecular weight. Macromol Rapid Commun. 2007;28:1889–93.

    CAS  Google Scholar 

  14. Nishiura T, Abe Y, Kitayama T. Syndiotactic-specific polymerization of methyl methacrylate with tert-butyllithium/trialkylaluminum in dichloromethane. Polym Bull. 2011;66:917–23.

    CAS  Google Scholar 

  15. Kitayama T, Nakagawa O, Kishiro S, Nishiura T, Hatada K. Control of main-chain stereostructure of graft polymers via stereospecific anionic copolymerization of syndiotactic poly(methyl methacrylate) macromonomer having methacryloyl function with methacrylate monomers. Polym J. 1993;25:707–20.

    CAS  Google Scholar 

  16. Usuki N, Satoh K, Kamigaito M. Synthesis of isotactic-block-syndiotactic poly(methyl methacrylate) via stereospecific living anionic polymerizations in combination with metal-halogen exchange, halogenation, and click reactions. Polymers. 2017;9:723.

    PubMed Central  Google Scholar 

  17. Usuki N, Satoh K, Kamigaito M. Synthesis of Syndiotactic macrocyclic poly(methyl methacrylate) via transformation of the growing terminal in stereospecific anionic polymerization. Macromol Chem Phys. 2017;218:1700041.

    Google Scholar 

  18. Usuki N, Okura H, Satoh K, Kamigaito M. Synthesis and stereocomplexation of pmma-based star polymers prepared by a combination of stereospecific anionic polymerization and crosslinking radical polymerization. J Polym Sci Part A-Polym Chem. 2018;56:1123–7.

    CAS  Google Scholar 

  19. Kohsaka Y, Kurata T, Kitayama T. End-functional stereoregular poly(methyl methacrylate) with clickable C=C bonds: facile synthesis and thiol-ene reaction. Polym Chem. 2013;4:5043–7.

    CAS  Google Scholar 

  20. Kohsaka Y, KurataT, Yamamoto K, Ishihara S, Kitayama T. Synthesis and post-polymerization reaction of end-clickable stereoregular polymethacrylates via termination of stereospecific living anionic polymerization. Polym Chem. 2015;6:1078–108.

    CAS  Google Scholar 

  21. Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010;1:17–36.

    CAS  Google Scholar 

  22. Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem. 2014;5:4820–70.

    CAS  Google Scholar 

  23. Kohsaka Y, Yamamoto K, Kitayama T. Stereoregular poly(methyl methacrylate) with double-clickable omega-end: synthesis and click reaction. Polym Chem. 2015;6:3601–7.

    CAS  Google Scholar 

  24. Kohsaka Y, Ishihara S, Kitayama T. Termination of living anionic polymerization of butyl acrylate with alpha-(chloromethyl) acrylate for end-functionalization and application to the evaluation of monomer reactivity. Macromol Chem Phys. 2015;216:1534–9.

    CAS  Google Scholar 

  25. Okamoto Y, Habaue S, Uno T, Baraki H. Stereospecific polymerization of alpha-substituted acrylates. Macromol Symp. 2000;157:209–16.

    CAS  Google Scholar 

  26. Habaue S, Yamada H, Uno T, Okamoto Y. Stereospecific polymerization of benzyl α-(alkoxymethyl) acrylates. J Polym Sci Part A-Polym Chem. 1997;35:721–6.

    CAS  Google Scholar 

  27. Uno T, Habaue S, Okamoto Y. Stereospecific polymerization of alpha-(menthoxymethyl)acrylate. Enantiomer. 2000;5:29–36.

    CAS  PubMed  Google Scholar 

  28. Kohsaka Y, Yamamoto K, Suzawa K, Kitayama T. Synthesis of isotactic poly[α-(hydroxymethyl)acrylate] by anionic polymerization of the protected monomer. Polym Bull. 2017;74:1935–48.

    CAS  Google Scholar 

  29. Kohsaka Y, Matsumoto., Zhang TY, Matsuhashi Y, Kitayama T. α-Exomethylene lactone possessing acetal-ester linkage: polymerization and postpolymerization modification for water-soluble polymer. J Polym Sci Part A-Polym Chem. 2016;54:955–61.

    CAS  Google Scholar 

  30. Vargas JS, Zilliox JG, Rempp P, Franta E. Cationic synthesis of macromers. Polym Bull. 1980;3:83–89.

    CAS  Google Scholar 

  31. Kohsaka Y, Koyama Y, Takata T. Graft polyrotaxanes: a new class of graft copolymers with mobile graft chains. Angew Chem Int Ed. 2011;50:10417–20.

    CAS  Google Scholar 

  32. Kohsaka Y, Nagatsuka N. End-reactive poly(tetrahydrofuran) for functionalization and graft copolymer synthesis via a conjugate substitution reaction. Polym J. 2020;52:75–81.

    CAS  Google Scholar 

  33. Burgess FJ, Cunliffe AV, Richards DH, Thompson D. Organic halides as cationic initiators. Polymer. 1978;19:334–40.

    CAS  Google Scholar 

  34. Kohsaka Y, Hagiwara K, Ito K. Polymerization of α-(halomethyl)acrylates through sequential nucleophilic attack of dithiols using a combination of addition-elimination and click reactions. Polym Chem. 2017;8:976–9.

    CAS  Google Scholar 

  35. Kohsaka Y, Miyazaki T, Hagiwara K. Conjugate substitution and addition of alpha-substituted acrylate: a highly efficient, facile, convenient, and versatile approach to fabricate degradable polymers by dynamic covalent chemistry. Polym Chem. 2018;9:1610–7.

    CAS  Google Scholar 

  36. Mathias LJ, Dickerson CW. Acrylate-containing oligo(ether ester) cross-linking agents with controlled molecular-weights via end-group termination. Macromolecules. 1991;24:2048–53.

    CAS  Google Scholar 

  37. Mathias LJ, Kusefoglu SH, Kress AO, Lee S, Wright JR, Culberson DA, Warren SC, Warren RM, Huang S, Lopez DR, Ingram JE, Dickerson CW, Jeno M, Halley RJ, Colletti RF, Cei G, Geiger CC. Multifunctional acrylate monomers, dimers and oligomers - applications from contact-lenses to wood-polymer composites. Makromol Chem-Macrom Symp. 1991;51:153–67.

    CAS  Google Scholar 

  38. Ji SH, Bruchmann B, Klok HA. Exploring the scope of the baylis-hillman reaction for the synthesis of side-chain functional polyesters. Macromol Chem Phys. 2011;212:2612–8.

    CAS  Google Scholar 

  39. Ji SH, Bruchmann B, Klok HA. Synthesis of side-chain functional polyesters via baylis-hillman polymerization. Macromolecules. 2011;44:5218–26.

    CAS  Google Scholar 

  40. Robert T, Friebel S. Itaconic acid - a versatile building block for renewable polyesters with enhanced functionality. Green Chem. 2016;18:2922–34.

    CAS  Google Scholar 

  41. Tang XY, Hong M, Falivene L, Caporaso L, Cavallo L, Chen E-YX. The quest for converting biorenewable bifunctional alpha-methylene-gamma-butyrolactone into degradable and recyclable polyester: controlling vinyl-addition/ring-opening/cross-linking pathways. J Am Chem Soc. 2016;138:14326–37.

    CAS  PubMed  Google Scholar 

  42. Hong M, Chen E-YX. Coordination ring-opening copolymerization of naturally renewable alpha-methylene-gamma-butyrolactone into unsaturated polyesters. Macromolecules. 2014;47:3614–24.

    CAS  Google Scholar 

  43. Kohsaka Y, Hiramatsu A. Synthesis and properties of polyethers containing 1,3-butadiene skeleton in the backbone. Chem Lett. 2019;48:894–7.

    CAS  Google Scholar 

  44. Nicolaou KC, Montagnon T, Snyder SA. Tandem reactions, cascade sequences, and biomimetic strategies in total synthesis. Chem Commun. 2003;39:551–64.

    Google Scholar 

  45. Tietze LF. Domino reactions in organic synthesis. Chem Rev. 1996;96:115–36.

    CAS  PubMed  Google Scholar 

  46. Kakuchi R. Multicomponent reactions in polymer synthesis. Angew Chem Int Ed. 2014;53:46–48.

    CAS  Google Scholar 

  47. Kakuchi R. The dawn of polymer chemistry based on multicomponent reactions. Polym J. 2019;51:945–53.

    CAS  Google Scholar 

  48. Koyama Y, Gudeangadi PG. One-pot synthesis of alternating peptides exploiting a new polymerization technique based on Ugi’s 4CC reaction. Chem Commun. 2017;53:3846–9.

    CAS  Google Scholar 

  49. Xu YC, Ren WM, Zhou H, Gu GG, Lu XB. Functionalized polyesters with tunable degradability prepared by controlled ring-opening (co)polymerization of lactones. Macromolecules. 2017;50:3131–42.

    CAS  Google Scholar 

  50. Xu YC, Zhou H, Sun XY, Ren WM, Lu XB. Crystalline polyesters from CO2 and 2-butyne via alpha-methylene-beta-butyrolactone intermediate. Macromolecules. 2016;49:5782–7.

    CAS  Google Scholar 

  51. Kohsaka Y, Yamashita M, Matsuhashi Y, Yamashita S. Synthesis of poly(conjugated ester)s by ring-opening polymerization of cyclic hemiacetal ester bearing acryl skeleton. Eur Polym J. 2019;120:109185.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kohsaka.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohsaka, Y. Conjugate substitution reaction of α-(substituted methyl)acrylates in polymer chemistry. Polym J 52, 1175–1183 (2020). https://doi.org/10.1038/s41428-020-0376-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0376-z

This article is cited by

Search

Quick links