Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Design and structure of catalysts: syntheses of carbon dioxide-based copolymers with cyclic anhydrides and/or cyclic esters

Abstract

CO2-based poly(ester-co-carbonate)s synthesized through the copolymerization of epoxides and CO2 with cyclic anhydrides and/or cyclic esters have continuously received attention due to their tunable degradability and adjustable thermal and mechanical properties. A variety of catalysts have been developed for this methodology, including zinc, cobalt, and chromium complexes, which can provide well-defined polymers. In this review, we provide a thorough account of the catalysts used in the copolymerization of epoxides and CO2 with cyclic anhydrides and/or cyclic esters. The development direction and future perspectives of catalyst design are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide. J Polym Sci Part B Polym Lett. 1969;7:287–92.

    CAS  Google Scholar 

  2. Xu YH, Lin LM, Xiao M, Wang SJ, Smith AT, Sun LY, et al. Synthesis and properties of CO2-based plastics: environmentally-friendly, energy-saving and biomedical polymeric materials. Prog Polym Sci. 2018;80:163–82.

    CAS  Google Scholar 

  3. Huang J, Worch JC, Dove AP, Coulembier O. Update and challenges in carbon dioxide-based polycarbonate synthesis. Chem Sus Chem. 2020;13:469–87.

    CAS  Google Scholar 

  4. Baba A, Kashiwagi H, Matsuda H. Reaction of carbon dioxide with oxetane catalyzed by organotin halide complexes: control of reaction by ligands. Organometallics. 1987;6:137–40.

    CAS  Google Scholar 

  5. Darensbourg DJ, Moncada AI, Choi W, Reibenspies JH. Mechanistic studies of the copolymerization reaction of oxetane and carbon dioxide to provide aliphatic polycarbonates catalyzed by (salen)CrX complexes. J Am Chem Soc. 2008;130:6523–33.

    CAS  PubMed  Google Scholar 

  6. Darensbourg DJ, Moncada AI. Tuning the selectivity of the oxetane and CO2 coupling process catalyzed by (salen)CrCl/n-Bu4NX: cyclic carbonate formation vs aliphatic polycarbonate production. Macromolecules. 2010;43:5996–6003.

    CAS  Google Scholar 

  7. Alves M, Grignard B, Boyaval A, Mereau R, De Winter J, Gerbaux P, et al. Organocatalytic coupling of CO2 with oxetane. ChemSusChem. 2017;10:1128–38.

    CAS  PubMed  Google Scholar 

  8. Huang J, De Winter J, Dove AP, Coulembier O. Metal-free synthesis of poly(trimethylene carbonate) by efficient valorization of carbon dioxide. Green Chem. 2019;21:472–7.

    CAS  Google Scholar 

  9. Kadokawa J, Habu H, Fukamachi S, Karasu M, Tagaya H, Chiba K. Direct polycondensation of carbon dioxide with xylylene glycols: a new method for the synthesis of polycarbonates. Macromol Rapid Commun. 1998;19:657–60.

    CAS  Google Scholar 

  10. Kadokawa J, Fukamachi S, Tagaya H, Chiba K. Direct polycondensation of carbon dioxide with various diols using the triphenylphosphine/bromotrichloromethane/N-cyclohexyl-N’,N’,N”,N”-tetramethylguanidine system as condensing agent. Polym J. 2000;32:703–6.

    CAS  Google Scholar 

  11. Tamura M, Ito K, Honda M, Nakagawa Y, Sugimoto H, Tomishige K. Direct copolymerization of CO2 and diols. Sci Rep. 2016;6:24038.

    PubMed  PubMed Central  Google Scholar 

  12. Soga K, Toshida Y, Hosoda S, Ikeda S. A convenient synthesis of a polycarbonate. Macromol Rapid Commun. 1977;178:2747–51.

    CAS  Google Scholar 

  13. Soga K, Toshida Y, Hosoda S, Ikeda S. Synthesis of a polycarbonate directly from carbon dioxide, alkali metal diolates and α,ω-dihalo compounds. Macromol Rapid Commun. 1978;179:2379–86.

    CAS  Google Scholar 

  14. Oi S, Nemoto K, Matsuno S, Inoue Y. Direct synthesis of polycarbonates from CO2, diols and dihalides. Macromol Rapid Commun. 1994;15:133–7.

    CAS  Google Scholar 

  15. Derouet D, Nguyen TMG, Brosse JC. Synthesis and characterization of poly(isoprene-b-carbonate)s derived from hydroxytelechelic polyisoprenes. J Appl Polym Sci. 2007;106:2843–58.

    CAS  Google Scholar 

  16. Chen ZL, Hadjichristidis N, Feng XS, Gnanou Y. Cs2CO3-promoted polycondensation of CO2 with diols and dihalides for the synthesis of miscellaneous polycarbonates. Polym Chem. 2016;7:4944–52.

    CAS  Google Scholar 

  17. Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makroml Chem. 1969;130:210–20.

    CAS  Google Scholar 

  18. Hirano T, Inoue S, Tsuruta T. Stereochemistry of the copolymerization of carbon cioxide with optically active phenylepoxyethane. Makroml Chem. 1975;176:1913–7.

    CAS  Google Scholar 

  19. Ree M, Bae JY, Jung JH, Shin TJ. A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J Polym Sci Part A Polym Chem. 1999;37:1863–76.

    CAS  Google Scholar 

  20. Eberhardt R, Allmendinger M, Zintl M, Troll C, Luinstra GA, Rieger B. New zinc dicarboxylate catalysts for the CO2/propylene oxide copolymerization reaction: activity enhancement through Zn(II)-ethylsulfinate initiating groups. Macromol Chem Phys. 2004;205:42–7.

    CAS  Google Scholar 

  21. Meng YZ, Du LC, Tjong SC, Zhu Q, Hay AS. Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. J Polym Sci Part A Polym Chem. 2002;40:3579–91.

    CAS  Google Scholar 

  22. Li XH, Meng YZ, Zhu Q, Xu Y, Tjong SC. Melt processable and biodegradable aliphatic polycarbonate derived from carbon dioxide and propylene oxide. J Appl Polym Sci. 2003;89:3301–8.

    CAS  Google Scholar 

  23. Shen ZQ, Chen XH, Zhang YF. New catalytic-systems for the fixation of carbon-dioxide. 2. Synthesis of high-molecular-weight epichlorohydrin carbonn-dioxide copolymer with rare-earth phosphonates triisobutyl-alluminum systems. Macromol Chem Phys. 1994;195:2003–11.

    CAS  Google Scholar 

  24. Chen S, Hua ZJ, Fang Z, Qi GR. Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst. Polymer. 2004;45:6519–24.

    CAS  Google Scholar 

  25. Kim I, Yi MJ, Byun SH, Park DW, Kim BU, Ha CS. Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex. Macromol Symp. 2005;224:181–91.

    CAS  Google Scholar 

  26. Takeda N, Inoue S. Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins. Makromol Chem. 1978;179:1377–81.

    CAS  Google Scholar 

  27. Darensbourg DJ, Holtcamp MW, Struck GE, Zimmer MS, Niezgoda SA, Rainey P, et al. Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide. J Am Chem Soc. 1999;121:107–16.

    CAS  Google Scholar 

  28. Cheng M, Moore DR, Reczek JJ, Chamberlain BM, Lobkovsky EB, Coates GW. Single-site beta-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: catalyst synthesis and unprecedented polymerization activity. J Am Chem Soc. 2001;123:8738–49.

    CAS  PubMed  Google Scholar 

  29. Allen SD, Moore DR, Lobkovsky EB, Coates GW. High-activity, single-site catalysts for the alternating copolymerization of CO2 and propylene oxide. J Am Chem Soc. 2002;124:14284–5.

    CAS  PubMed  Google Scholar 

  30. Moore DR, Cheng M, Lobkovsky EB, Coates GW. Mechanism of the alternating copolymerization of epoxides and CO2 using beta-diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment. J Am Chem Soc. 2003;125:11911–24.

    CAS  PubMed  Google Scholar 

  31. Darensbourg DJ, Mackiewicz RM, Rodgers JL, Fang CC, Billodeaux DR, Reibenspies JH. Cyclohexene oxide/CO2 copolymerization catalyzed by chromium(III) salen complexes and N-methylimidazole: effects of varying salen ligand substituents and relative cocatalyst loading. Inorg Chem. 2004;43:6024–34.

    CAS  PubMed  Google Scholar 

  32. Kember MR, Knight PD, Reung PTR, Williams CK. Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Angew Chem Int Ed. 2009;48:931–3.

    CAS  Google Scholar 

  33. Zhang DY, Boopathi SK, Hadjichristidis N, Gnanou Y, Feng XS. Metal-free alternating copolymerization of CO2 with epoxides: Fulfilling “green” synthesis and activity. J Am Chem Soc. 2016;138:11117–20.

    CAS  PubMed  Google Scholar 

  34. Koning CE, Wildeson J, Parton R, Plum B, Steeman P, Darensbourg DJ. Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide. Polymer. 2001;42:3995–4004.

    CAS  Google Scholar 

  35. Ren WM, Zhang X, Liu Y, Li JF, Wang H, Lu XB. Highly active, bifunctional Co(III)-salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and terpolymerization with aliphatic epoxides. Macromolecules. 2010;43:1396–402.

    CAS  Google Scholar 

  36. Luinstra GA. Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: Catalysis and material properties. Polym Rev. 2008;48:192–219.

    CAS  Google Scholar 

  37. Seong JE, Na SJ, Cyriac A, Kim BW, Lee BY. Terpolymerizations of CO2, propylene oxide, and various epoxides using a cobalt(III) complex of calen-type ligand tethered by four quaternary ammonium salts. Macromolecules. 2010;43:903–8.

    CAS  Google Scholar 

  38. Wu JS, Xiao M, He H, Wang SJ, Han DM, Meng YZ. Synthesis and characterization of high molecular weight poly(1,2-propylene carbonate-co-1,2-cyclohexylene carbonate) using zinc complex catalyst. Chin J Polym Sci. 2011;29:552–9.

    CAS  Google Scholar 

  39. Darensbourg DJ, Poland RR, Strickland AL. (Salan)CrCl, an effective catalyst for the copolymerization and terpolymerization of epoxides and carbon dioxide. J Polym Sci A Polym Chem. 2012;50:127–33.

    CAS  Google Scholar 

  40. Jiang YJ, Ren WM, Liu Y, Lu XB. Synthesis of polycarbonate block terpolymers using robust cobalt catalyst systems. Chin J Polym Sci. 2019;37:1200–4.

    CAS  Google Scholar 

  41. Hillmyer MA, Tolman WB. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc Chem Res. 2014;47:2390–6.

    CAS  PubMed  Google Scholar 

  42. Tardy A, Nicolas J, Gigmes D, Lefay C, Guillaneuf Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degradable materials. Chem Rev. 2017;117:1319–406.

    CAS  PubMed  Google Scholar 

  43. Brannigan RP, Dove AP. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater Sci. 2017;5:9–21.

    CAS  Google Scholar 

  44. Zhou M, Takayanagi M, Yoshida Y, Ishii S, Noguchi H. Enzyme-catalyzed degradation of aliphatic polycarbonates prepared from epoxides and carbon dioxide. Polym Bull. 1999;42:419–24.

    CAS  Google Scholar 

  45. Schappacher M, Fabre T, Mingotaud AF, Soum A. Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer-Part 1: preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts. Biomaterials. 2001;22:2849–55.

    CAS  PubMed  Google Scholar 

  46. Fabre T, Schappacher M, Bareille R, Dupuy B, Soum A, Bertrand-Barat J, et al. Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer-Part 2: in vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide. Biomaterials. 2001;22:2951–8.

    CAS  PubMed  Google Scholar 

  47. Lu LB, Huang KL. Preparation of poly(propylene-co-gamma-butyrolactone carbonate) and release profiles of drug-loaded microcapsules. J Polym Sci A Polym Chem. 2005;43:2468–75.

    CAS  Google Scholar 

  48. Peng DM, Huang KL, Liu YF, Liu SQ, Wu H, Xiao H. Preparation of carbon dioxide/propylene oxide/epsilon-caprolactone copolymers and their drug release behaviors. Polym Bull. 2007;59:117–25.

    CAS  Google Scholar 

  49. Paul S, Zhu YQ, Romain C, Brooks R, Saini PK, Williams CK. Ring-opening copolymerization (ROCOP): Synthesis and properties of polyesters and polycarbonates. Chem Commun. 2015;51:6459–79.

    CAS  Google Scholar 

  50. Longo JM, Sanford MJ, Coates GW. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: Structure-property relationships. Chem Rev. 2016;116:15167–97.

    CAS  PubMed  Google Scholar 

  51. Li Y, Zhang YY, Hu LF, Zhang XH, Du BY, Xu JT. Carbon dioxide-based copolymers with various architectures. Prog Polym Sci. 2018;82:120–57.

    CAS  Google Scholar 

  52. Chen EYX. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem Rev. 2009;109:5157–214.

    CAS  PubMed  Google Scholar 

  53. Hong M, Chen JW, Chen EYX. Polymerization of polar monomers mediated by main-group lewis acid-base pairs. Chem Rev. 2018;118:10551–616.

    CAS  PubMed  Google Scholar 

  54. Liu YF, Huang KL, Peng DM, Wu H. Synthesis, characterization and hydrolysis of an aliphatic polycarbonate by terpolymerization of carbon dioxide, propylene oxide and maleic anhydride. Polymer. 2006;47:8453–61.

    CAS  Google Scholar 

  55. Lu LB, Huang KL. Synthesis and characteristics of a novel aliphatic polycarbonate, poly (propylene oxide)-co-(carbon dioxide)-co-(gamma-butyrolactone). Polym Int. 2005;54:870–4.

    CAS  Google Scholar 

  56. Lu LB, Huang KL, Huang L, Yan WB. Characterization and terpolymerization of carbon dioxide/propylene oxide/gamma-butyrolactone. Acta Polym Sin. 2005:384–8.

  57. Liu SQ, Xiao H, Huang KL, Lu LB, Huang QY. Terpolymerization of carbon dioxide with propylene oxide and epsilon-caprolactone: synthesis, characterization and biodegradability. Polym Bull 2006;56:53–62.

    CAS  Google Scholar 

  58. Liu SQ, Wang JL, Huang KL, Liu YF, Wu WK. Synthesis of poly(propylene-co-lactide carbonate) and hydrolysis of the terpolymer. Polym Bull. 2011;66:327–40.

    CAS  Google Scholar 

  59. Liu YF, Huang KL, Peng DM, Liu SQ, Wu H. Synthesis and properties of novel aliphatic polycarbonate from carbon dioxide with 1,2-butylene oxide and ɛ-caprolactone. Chin Chem Lett. 2007;18:209–12.

    CAS  Google Scholar 

  60. Song PF, Xiao M, Du FG, Wang SJ, Gan LQ, Liu GQ, et al. Synthesis and properties of aliphatic polycarbonates derived from carbon dioxide, propylene oxide and maleic anhydride. J Appl Polym Sci. 2008;109:4121–9.

    CAS  Google Scholar 

  61. Song PF, Wang SJ, Xiao M, Du FG, Gan LQ, Liu GQ, et al. Cross-linkable and thermally stable aliphatic polycarbonates derived from CO2, propylene oxide and maleic anhydride. J Polym Res. 2009;16:91–7.

    CAS  Google Scholar 

  62. Liu YL, Deng KR, Wang SJ, Xiao M, Han DM, Meng YZ. A novel biodegradable polymeric surfactant synthesized from carbon dioxide, maleic anhydride and propylene epoxide. Polym Chem. 2015;6:2076–83.

    CAS  Google Scholar 

  63. Yu X, Xiao M, Wang S, Han D, Meng Y. Fabrication and properties of crosslinked poly(propylene carbonate maleate) gel polymer electrolyte for lithium-Ion battery. J Appl Polym Sci. 2010;118:2078–83.

    CAS  Google Scholar 

  64. Liu YL, Xiao M, Wang SJ, Xia L, Hang DM, Cui GF, et al. Mechanism studies of terpolymerization of phthalic anhydride, propylene epoxide, and carbon dioxide catalyzed by ZnGA. RSC Adv. 2014;4:9503–8.

    CAS  Google Scholar 

  65. Gao LJ, Chen XG, Liang XJ, Guo XZ, Huang XL, Chen CF, et al. A novel one-pot synthesis of poly(propylene carbonate) containing cross-linked networks by copolymerization of carbon dioxide, propylene oxide, maleic anhydride, and furfuryl glycidyl ether. Polymers. 2019;11:881.

    CAS  PubMed Central  Google Scholar 

  66. Song PF, Mao XD, Zhang XF, Zhu XG, Wang RM. A one-step strategy for cross-linkable aliphatic polycarbonates with high degradability derived from CO2, propylene oxide and itaconic anhydride. RSC Adv. 2014;4:15602–5.

    CAS  Google Scholar 

  67. Noernberg B, Luinstra GA. Influence of norbornene dicarboxylic anhydride on the copolymerization of carbon dioxide and propylene oxide. Eur Polym J. 2015;73:297–307.

    CAS  Google Scholar 

  68. Gao LJ, Feng JY. A one-step strategy for thermally and mechanically reinforced pseudo-interpenetrating poly(propylene carbonate) networks by terpolymerization of CO2, propylene oxide and pyromellitic dianhydride. J Mater Chem A. 2013;1:3556–60.

    CAS  Google Scholar 

  69. Chen XG, Wang LY, Feng JY, Huang XL, Guo XZ, Chen J, et al. Enhanced poly(propylene carbonate) with thermoplastic networks: a one-pot synthesis from carbon dioxide, propylene oxide, and a carboxylic dianhydride. Polymers. 2018;10:552.

    PubMed Central  Google Scholar 

  70. Hwang YT, Jung JW, Ree M, Kim H. Terpolymerization of CO2 with propylene oxide and epsilon-caprolactone using zinc glutarate catalyst. Macromolecules. 2003;36:8210–2.

    CAS  Google Scholar 

  71. Luo WH, Xiao M, Wang SJ, Han DM, Meng YZ. Gradient terpolymers with long epsilon-caprolactone rich sequence derived from propylene oxide, CO2, and epsilon-caprolactone catalyzed by zinc glutarate. Eur Polym J. 2016;84:245–55.

    CAS  Google Scholar 

  72. Padmanaban S, Dharmalingam S, Yoon S. A Zn-MOF-catalyzed terpolymerization of propylene oxide, CO2, and beta-butyrolactone. Catalysts. 2018;8:393.

    Google Scholar 

  73. Nysenko ZN, Said-Galiev EE, Buzin MI, Belevtsev YE, Il’in MM, Nikiforova GG, et al. Synthesis, structure and thermal properties of propylene oxide-carbon dioxide-L-lactide terpolymers. Mendeleev Commun. 2014;24:236–8.

    CAS  Google Scholar 

  74. Nysenko ZN, Galiev EES, Ilyin MM, Rusak VV, Glazkov AA, Sakharov AM. Anionic coordination copolymerization of propylene oxide, carbon dioxide, and L-lactide. Russ Chem Bull. 2015;64:2914–8.

    CAS  Google Scholar 

  75. Tang L, Luo WH, Xiao M, Wang SJ, Meng YZ. One-pot synthesis of terpolymers with long L-lactide rich sequence derived from propylene oxide, CO2, and l-lactide catalyzed by zinc adipate. J Polym Sci A Polym Chem. 2015;53:1734–41.

    CAS  Google Scholar 

  76. Song PF, Xu HD, Mao XD, Liu XJ, Wang L. A one-step strategy for aliphatic poly(carbonate-ester)s with high performance derived from CO2, propylene oxide and l-lactide. Polym Adv Technol. 2017;28:736–41.

    CAS  Google Scholar 

  77. Sun XK, Zhang XH, Chen S, Du BY, Wang Q, Fan ZQ, et al. One-pot terpolymerization of CO2, cyclohexene oxide and maleic anhydride using a highly active heterogeneous double metal cyanide complex catalyst. Polymer. 2010;51:5719–25.

    CAS  Google Scholar 

  78. Subhani MA, Koehler B, Guertler C, Leitner W, Mueller TE. Transparent films from CO2-based polyunsaturated poly(ether carbonate)s: a novel. Synth Strategy Fast Curing Angew Chem Int Ed. 2016;55:5591–6.

    CAS  Google Scholar 

  79. Lin Q, Guo ZF, Pan LS, Xiang X. Zn-Cr double metal cyanide catalysts synthesized by ball milling for the copolymerization of CO2/propylene oxide, phthalic anhydride/propylene oxide, and CO2/propylene oxide/phthalic anhydride. Catal Commun. 2015;64:114–8.

    Google Scholar 

  80. Liu NZ, Gu CH, Chen MT, Zhang JA, Yang W, Zhan AH, et al. Terpolymerizations of CO2, propylene oxide and DL-lactide catalyzed by Zn-Fe DMC catalysts with quaternary ammonium salts. ChemistrySelect. 2020;5:2388–94.

    CAS  Google Scholar 

  81. Li Y, Hong JL, Wei RJ, Zhang YY, Tong ZZ, Zhang XH, et al. Highly efficient one-pot/one-step synthesis of multiblock copolymers from three-component polymerization of carbon dioxide, epoxide and lactone. Chem Sci. 2015;6:1530–6.

    CAS  PubMed  Google Scholar 

  82. Jeske RC, Rowley JM, Coates GW. Pre-rate-determining selectivity in the terpolymerization of epoxides, cyclic anhydrides, and CO2: a one-step route to diblock copolymers. Angew Chem Int Ed. 2008;47:6041–4.

    CAS  Google Scholar 

  83. Kroger M, Folli C, Walter O, Doring M. Alternating copolymerization of carbon dioxide and cyclohexene oxide and their terpolymerization with lactide catalyzed by zinc complexes of N,N ligands. Adv Synth Catal. 2006;348:1908–18.

    Google Scholar 

  84. Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW. Polymerization of lactide with zinc and magnesium beta-diiminate complexes: Stereocontrol and mechanism. J Am Chem Soc. 2001;123:3229–38.

    CAS  PubMed  Google Scholar 

  85. Cheng M, Attygalle AB, Lobkovsky EB, Coates GW. Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide. J Am Chem Soc. 1999;121:11583–4.

    CAS  Google Scholar 

  86. Kernbichl S, Reiter M, Adams F, Vagin S, Rieger B. CO2-controlled one-pot synthesis of AB, ABA block, and statistical terpolymers from beta-butyrolactone, epoxides, and CO2. J Am Chem Soc. 2017;139:6787–90.

    CAS  PubMed  Google Scholar 

  87. Kernbichl S, Reiter M, Mock J, Rieger B. Terpolymerization of beta-butyrolactone, epoxides, and CO2: chemoselective CO2-switch and its impact on kinetics and material properties. Macromolecules. 2019;52:8476–83.

    CAS  Google Scholar 

  88. Romain C, Williams CK. Chemoselective polymerization control: From mixed-monomer feedstock to copolymers. Angew Chem Int Ed. 2014;53:1607–10.

    CAS  Google Scholar 

  89. Jutz F, Buchard A, Kember MR, Fredriksen SB, Williams CK. Mechanistic investigation and reaction kinetics of the low-pressure copolymerization of cyclohexene oxide and carbon dioxide catalyzed by a dizinc complex. J Am Chem Soc. 2011;133:17395–405.

    CAS  PubMed  Google Scholar 

  90. Paul S, Romain C, Shaw J, Williams CK. Sequence selective polymerization catalysis: a new route to ABA block copoly(ester-b-carbonate-b-ester). Macromolecules. 2015;48:6047–56.

    CAS  Google Scholar 

  91. Kember MR, Copley J, Buchard A, Williams CK. Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate). Polym Chem. 2012;3:1196–201.

    CAS  Google Scholar 

  92. Darensbourg DJ, Wu GP. A one-pot synthesis of a triblock copolymer from propylene oxide/carbon dioxide and lactide: intermediacy of polyol initiators. Angew Chem Int Ed. 2013;52:10602–6.

    CAS  Google Scholar 

  93. Saini PK, Romain C, Zhu Y, Williams CK. Di-magnesium and zinc catalysts for the copolymerization of phthalic anhydride and cyclohexene oxide. Polym Chem. 2014;5:6068–75.

    CAS  Google Scholar 

  94. Saini PK, Fiorani G, Mathers RT, Williams CK. Zinc versus magnesium: orthogonal catalyst reactivity in selective polymerizations of epoxides, bio-derived anhydrides and carbon dioxide. Chem Eur J. 2017;23:4260–5.

    CAS  PubMed  Google Scholar 

  95. Romain C, Zhu YQ, Dingwall P, Paul S, Rzepa HS, Buchard A, et al. Chemoselective polymerizations from mixtures of epoxide, lactone, anhydride, and carbon dioxide. J Am Chem Soc. 2016;138:4120–31.

    CAS  PubMed  Google Scholar 

  96. Chen TTD, Zhu YQ, Williams CK. Pentablock copolymer from tetracomponent monomer mixture using a switchable dizinc catalyst. Macromolecules. 2018;51:5346–51.

    CAS  Google Scholar 

  97. Sulley GS, Gregory GL, Chen TTD, Pena Carrodeguas L, Trott G, Santmarti A, et al. Switchable catalysis improves the properties of CO2-derived polymers: poly(cyclohexene carbonate-b-epsilon-decalactone-b-cyclohexene carbonate) adhesives, elastomers, and toughened plastics. J Am Chem Soc. 2020;142:4367–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Raman SK, Raja R, Arnold PL, Davidson MG, Williams CK. Waste not, want not: CO2 (re)cycling into block polymers. Chem Commun. 2019;55:7315–8.

    CAS  Google Scholar 

  99. Thevenon A, Garden JA, White AJP, Williams CK. Dinuclear zinc salen catalysts for the ring opening copolymerization of epoxides and carbon dioxide or anhydrides. Inorg Chem. 2015;54:11906–15.

    CAS  PubMed  Google Scholar 

  100. Xu YH, Wang SJ, Lin LM, Xiao M, Meng YZ. Semi-crystalline terpolymers with varying chain sequence structures derived from CO2, cyclohexene oxide and epsilon-caprolactone: one-step synthesis catalyzed by tri-zinc complexes. Polym Chem. 2015;6:1533–40.

    CAS  Google Scholar 

  101. Huijser S, HosseiniNejad E, Sablong R, Jong de C, Koning CE, Duchateau R. Ring-opening co- and terpolymerization of an alicyclic oxirane with carboxylic acid anhydrides and CO2 in the presence of chromium porphyrinato and salen catalysts. Macromolecules. 2011;44:1132–9.

    CAS  Google Scholar 

  102. Bernard A, Chatterjee C, Chisholm MH. The influence of the metal (Al, Cr and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and cyclic anhydrides by porphyrin metal(III) complexes. Polymer. 2013;54:2639–46.

    CAS  Google Scholar 

  103. Xie D, Yang Z, Wu L, Zhang C, Chisholm MH. One-pot regioselective and stereoselective terpolymerization of rac-lactide, CO2 and rac-propylene oxide with TPPMCl (M = Cr, Co, Al)/PPNCl binary catalyst. Polym Int. 2018;67:883–93.

    CAS  Google Scholar 

  104. Koning CE, Sablong RJ, Nejad EH, Duchateau R, Buijsen P. Novel coating resins based on polycarbonates and poly(ester-co-carbonate)s made by catalytic chain growth polymerization of epoxides with CO2 and with anhydride/CO2. Prog Org Coat. 2013;76:1704–11.

    CAS  Google Scholar 

  105. Darensbourg DJ, Poland RR, Escobedo C. Kinetic studies of the alternating copolymerization of cyclic acid anhydrides and epoxides, and the terpolymerization of cyclic acid anhydrides, epoxides, and CO2 catalyzed by (salen)(CrCl)-Cl-III. Macromolecules. 2012;45:2242–8.

    CAS  Google Scholar 

  106. Han B, Liu BY, Ding HN, Duan ZY, Wang XH, Theato P. CO2-tuned sequential synthesis of stereoblock copolymers comprising a stereoregularity-adjustable polyester block and an atactic CO2-based polycarbonate block. Macromolecules. 2017;50:9207–15.

    CAS  Google Scholar 

  107. Hu CY, Duan RL, Yang SC, Pang X, Chen XS. CO2 controlled catalysis: switchable homopolymerization and copolymerization. Macromolecules. 2018;51:4699–704.

    CAS  Google Scholar 

  108. Jessop PG, Heldebrant DJ, Li XW, Eckert CA, Liotta CL. Green chemistry-reversible nonpolar-to-polar solvent. Nature. 2005;436:1102.

    CAS  PubMed  Google Scholar 

  109. Jessop PG, Mercer SM, Heldebrant DJ. CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ Sci. 2012;5:7240–53.

    CAS  Google Scholar 

  110. Heldebrant DJ, Yonker CR, Jessop PG, Phan L. Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci. 2008;1:487–93.

    CAS  Google Scholar 

  111. Darensbourg DJ, Yarbrough JC. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc. 2002;124:6335–42.

    CAS  PubMed  Google Scholar 

  112. Eberhardt R, Allmendinger M, Rieger B. DMAP/Cr(III) catalyst ratio: the decisive factor for poly(propylene carbonate) formation in the coupling of CO2 and propylene oxide. Macromol Rapid Commun. 2003;24:194–6.

    CAS  Google Scholar 

  113. Liu Y, Guo JX, Lu HW, Wang HB, Lu XB. Making various degradable polymers from epoxides using a versatile dinuclear chromium catalyst. Macromolecules. 2018;51:771–8.

    CAS  Google Scholar 

  114. Duan ZY, Wang XY, Gao Q, Zhang L, Liu BY, Kim I. Highly active bifunctional cobalt-salen complexes for the synthesis of poly(ester-block-carbonate) copolymer via terpolymerization of carbon dioxide, propylene oxide, and norbornene anhydride isomer: Roles of anhydride conformation consideration. J Polym Sci Pol Chem. 2014;52:789–95.

    CAS  Google Scholar 

  115. Jeon JY, Eo SC, Varghese JK, Lee BY. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts. Beilstein J Org Chem. 2014;10:1787–95.

    PubMed  PubMed Central  Google Scholar 

  116. Niu YS, Li HC. Terpolymerization of carbon dioxide with propylene oxide and gamma-butyrolactone catalyzed by salenCoIII(2,4-dinitrophenoxy) and lewis-basic Cocatalyst. Adv Polym Tech. 2018;37:21660.

    Google Scholar 

  117. Li X, Hu CY, Pang X, Duan RL, Chen XS. One-pot copolymerization of epoxides/carbon dioxide and lactide using a ternary catalyst system. Catal Sci Technol. 2018;8:6452–7.

    CAS  Google Scholar 

  118. Duan RL, Hu CY, Sun ZQ, Zhang H, Pang X, Chen XS. Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO2: cocatalyst-free catalysis. Green Chem. 2019;21:4723–31.

    CAS  Google Scholar 

  119. Zhou X, Zhang G, Wang Y, Xie X. Preparing carbon dioxide-based block copolymer comprises e.g. utilizing a cyclic acid anhydride monomer, a lactone monomer, an epoxy compound, and carbon dioxide as a monomer and initiating ring opening reaction of epoxy compound. CN110092900-A. China: University Huazhong Science & Technology; 2019.

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant No. 51673131), and the Fundamental Research Funds for the Central Universities (171gjc37) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Xiao or Yuezhong Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Ye, S., Wang, S. et al. Design and structure of catalysts: syntheses of carbon dioxide-based copolymers with cyclic anhydrides and/or cyclic esters. Polym J 53, 3–27 (2021). https://doi.org/10.1038/s41428-020-0374-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0374-1

This article is cited by

Search

Quick links