Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Passerini three-component reaction of aldehyde end-functionalized polymers via RAFT polymerization using chain transfer agents featuring aldehyde

Abstract

In this study, a novel pyrazole–carbodithioate-based chain transfer agent (CTA) featuring an aldehyde group (CTA-CHO) was designed and synthesized for RAFT polymerization. The obtained CTA-CHO was employed for the RAFT polymerization of styrene to afford well-defined polystyrenes bearing an aldehyde at their chain ends with low Ð values (~1.1). In addition, the reactivity of the aldehyde moiety at the end of the chain was precisely evaluated, while the Passerini three-component reaction was successfully performed on the aldehyde group.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu J, Bienaymé H. Multicomponent reactions. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2005.

  2. Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA. Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Res. 1996;29:123–31. https://doi.org/10.1021/ar9502083

    Article  CAS  Google Scholar 

  3. Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev. 2006;106:17–89. https://doi.org/10.1021/cr0505728

    Article  PubMed  CAS  Google Scholar 

  4. Dömling A, Wang W, Wang K. Chemistry and biology of multicomponent reactions. Chem Rev. 2012;112:3083–135. https://doi.org/10.1021/cr100233r

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rotstein BH, Zaretsky S, Rai V, Yudin AK. Small heterocycles in multicomponent reactions. Chem Rev. 2014;114:8323–59. https://doi.org/10.1021/cr400615v

    Article  PubMed  CAS  Google Scholar 

  6. Touré BB, Hall DG. Natural product synthesis using multicomponent reaction strategies. Chem Rev. 2009;109:4439–86. https://doi.org/10.1021/cr800296p

    Article  PubMed  CAS  Google Scholar 

  7. Wessjohann LA, Rivera DG, Vercillo OE. Multiple multicomponent macrocyclizations (MiBs): a strategic development toward macrocycle diversity. Chem Rev. 2009;109:796–814. https://doi.org/10.1021/cr8003407

    Article  CAS  Google Scholar 

  8. Kreye O, Türünç O, Sehlinger A, Rackwitz J, Meier MAR. Structurally diverse polyamides obtained from monomers derived via the Ugi multicomponent reaction. Chem Eur J. 2012;18:5767–76. https://doi.org/10.1002/chem.201103341

    Article  PubMed  CAS  Google Scholar 

  9. Kreye O, Tóth T, Meier MAR. Introducing multicomponent reactions to polymer science: passerini reactions of renewable monomers. J Am Chem Soc. 2011;133:1790–2. https://doi.org/10.1021/ja1113003

    Article  PubMed  CAS  Google Scholar 

  10. Zhu C, Yang B, Zhao Y, Fu C, Tao L, Wei Y. A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry? Polym Chem. 2013;4:5395–5400. https://doi.org/10.1039/C3PY00553D

    Article  CAS  Google Scholar 

  11. Zhang Q, Zhang Y, Zhao Y, Yang B, Fu C, Wei Y, et al. Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition–Fragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s. ACS Macro Lett. 2015;4:128–32. https://doi.org/10.1021/mz500734c

    Article  CAS  Google Scholar 

  12. Kakuchi R, Theato P. Three-Component Reactions for Post-Polymerization Modifications. ACS Macro Lett. 2013;2:419–22. https://doi.org/10.1021/mz400144q

    Article  CAS  Google Scholar 

  13. Lee I-H, Kim H, Choi T-L. Cu-Catalyzed Multicomponent Polymerization To Synthesize a Library of Poly(N-sulfonylamidines). J Am Chem Soc. 2013;135:3760–3. https://doi.org/10.1021/ja312592e

    Article  PubMed  CAS  Google Scholar 

  14. Deng XX, Cui Y, Du FS, Li ZC. Functional highly branched polymers from multicomponent polymerization (MCP) based on the ABC type Passerini reaction. Polym Chem. 2014;5:3316–20. https://doi.org/10.1039/c3py01705b

    Article  CAS  Google Scholar 

  15. Jee J-A, Spagnuolo LA, Rudick JG. Convergent synthesis of dendrimers via the passerini three-component reaction. Org Lett. 2012;14:3292–5. https://doi.org/10.1021/ol301263v

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Kan X-W, Deng X-X, Song C-C, Du F-S, Li Z-C. Simultaneous dual end-functionalization of peg via the passerini three-component reaction for the synthesis of ABC miktoarm terpolymers. J Polym Sci Part A. 2013;51:865–73. https://doi.org/10.1002/pola.26443

    Article  CAS  Google Scholar 

  17. Deng X-X, Li L, Li Z-L, Lv A, Du F-S, Li Z-C. Sequence Regulated Poly(ester-amide)s Based on Passerini Reaction. ACS Macro Lett. 2012;1:1300–3. https://doi.org/10.1021/mz300456p

    Article  CAS  Google Scholar 

  18. Yang B, Zhao Y, Fu CK, Zhu CY, Zhang YL, Wang SQ, et al. Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polym Chem. 2014;5:2704–8. https://doi.org/10.1039/c4py00001c

    Article  CAS  Google Scholar 

  19. Kakuchi R, Theato P. Efficient multicomponent postpolymerization modification based on kabachnik-fields reaction. ACS Macro Lett. 2014;3:329–32. https://doi.org/10.1021/mz500139c

    Article  CAS  Google Scholar 

  20. Moldenhauer F, Kakuchi R, Theato P. Synthesis of Polymers via Kabachnik-Fields Polycondensation. ACS Macro Lett. 2016;5:20–23. https://doi.org/10.1021/acsmacrolett.5b00720

    Article  CAS  Google Scholar 

  21. Kakuchi R, Yoshida S, Sasaki T, Kanoh S, Maeda K. Multi-component post-polymerization modification reactions of polymers featuring lignin-model compounds. Polym Chem. 2018;9:2109–15. https://doi.org/10.1039/C7PY01923H

    Article  CAS  Google Scholar 

  22. Zhang Y, Zhao Y, Yang B, Zhu C, Wei Y, Tao L. ‘One pot’ synthesis of well-defined poly(aminophosphonate)s: time for the Kabachnik–Fields reaction on the stage of polymer chemistry. Polym Chem. 2014;5:1857–62. https://doi.org/10.1039/C3PY01486J

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhao Y, Xia S, Tao L, Wei Y. A Facile Preparation of Mussel-Inspired Poly(dopamine phosphonate-co-PEGMA)s via a One-Pot Multicomponent Polymerization System. Macro Rapid Commun. 2020;41:1900533 https://doi.org/10.1002/marc.201900533

    Article  CAS  Google Scholar 

  24. Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal click chemistries in the synthesis of functional soft materials. Chem Rev. 2009;109:5620–86. https://doi.org/10.1021/cr900138t

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Golas PL, Matyjaszewski K. Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev. 2010;39:1338–54. https://doi.org/10.1039/b901978m

    Article  PubMed  CAS  Google Scholar 

  26. Pound G, McKenzie JM, Lange RF, Klumperman B. Polymer-protein conjugates from omega-aldehyde endfunctional poly(N-vinylpyrrolidone) synthesised via xanthate-mediated living radical polymerisation. Chem Commun. 2008;27:3193–5. https://doi.org/10.1039/b803952f

    Article  CAS  Google Scholar 

  27. Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem. 2012, 65 (8). https://doi.org/10.1071/ch12295.

  28. Moad G. A Critical Survey of Dithiocarbamate Reversible Addition‐Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. J Polym Sci Part A. 2018;57:216–27. https://doi.org/10.1002/pola.29199

    Article  CAS  Google Scholar 

  29. Keddie DJ, Moad G, Rizzardo E, Thang SH. RAFT Agent Design and Synthesis. Macromolecules. 2012;45:5321–42. https://doi.org/10.1021/ma300410v

    Article  CAS  Google Scholar 

  30. Li J, Yang S, Wang L, Wang X, Liu L. Thermoresponsive dynamic covalent polymers with tunable properties. Macromolecules. 2013;46:6832–42. https://doi.org/10.1021/ma400948j

    Article  CAS  Google Scholar 

  31. Reader PW, Pfukwa R, Jokonya S, Arnott GE, Klumperman B. Synthesis of α,ω-heterotelechelic PVP for bioconjugation, via a one-pot orthogonal end-group modification procedure. Polym Chem. 2016;7:6450–6. https://doi.org/10.1039/C6PY01296E

    Article  CAS  Google Scholar 

  32. Deng J, Liu X, Ma L, Cheng C, Sun S, Zhao C. Switching biological functionalities of biointerfaces via dynamic covalent bonds. J Mater Chem B. 2016;4:694–703. https://doi.org/10.1039/C5TB02072G

    Article  PubMed  CAS  Google Scholar 

  33. Jackson AW, Fulton DA. Dynamic Covalent Diblock Copolymers Prepared from RAFT Generated Aldehyde and Alkoxyamine End-Functionalized Polymers. Macromolecules. 2010;43:1069–75. https://doi.org/10.1021/ma902291a

    Article  CAS  Google Scholar 

  34. Gardiner J, Martinez-Botella I, Tsanaktsidis J, Moad G. Dithiocarbamate RAFT agents with broad applicability – the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polym Chem. 2016;7:481–92. https://doi.org/10.1039/c5py01382h

    Article  CAS  Google Scholar 

  35. Gardiner J, Martinez-Botella I, Kohl TM, Krstina J, Moad G, Tyrell JH, et al. 4-Halogeno-3,5-dimethyl-1H-pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability. Polym Int. 2017;66:1438–47. https://doi.org/10.1002/pi.5423

    Article  CAS  Google Scholar 

  36. Banerjee S, Guerre M, Améduri B, Ladmiral V. Syntheses of 2-(trifluoromethyl)acrylate-containing block copolymers via RAFT polymerization using a universal chain transfer agent. Polym Chem. 2018;9:3511–21. https://doi.org/10.1039/C8PY00655E

    Article  CAS  Google Scholar 

  37. Willcock H, O’Reilly RK. End group removal and modification of RAFT polymers. Polym Chem. 2010;1:149–57. https://doi.org/10.1039/B9PY00340A

    Article  CAS  Google Scholar 

  38. Uchiyama M, Satoh K, Kamigaito M. Cationic RAFT Polymerization Using ppm Concentrations of Organic Acid. Angew Chem Int Ed. 2015;54:1924–8. https://doi.org/10.1002/anie.201410858

    Article  CAS  Google Scholar 

  39. Ramozzi R, Morokuma K. Revisiting the passerini reaction mechanism: existence of the nitrilium, organocatalysis of its formation, and solvent effect. J Org Chem. 2015;80:5652–7. https://doi.org/10.1021/acs.joc.5b00594

    Article  PubMed  CAS  Google Scholar 

  40. Maeda S, Komagawa S, Uchiyama M, Morokuma K. Finding reaction pathways for multicomponent reactions: the passerini reaction is a four-component reaction. Angew Chem Int Ed. 2011;50:644–9. https://doi.org/10.1002/anie.201005336

    Article  CAS  Google Scholar 

  41. Sarri P, Venturi F, Cuda F, Roelens S. Binding of acetylcholine and tetramethylammonium to flexible cyclophane receptors: improving on binding ability by optimizing host’s geometry. J Org Chem. 2004;69:3654–61. https://doi.org/10.1021/jo049899j

    Article  PubMed  CAS  Google Scholar 

  42. Loim NM, Kelbyscheva ES. Synthesis of dendrimers with terminal formyl groups. Russ Chem Bull 2004;53:2080–5. https://doi.org/10.1007/s11172-005-0076-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RK gratefully acknowledges the Leading Initiative for Excellent Young Researchers (LEADER) and a Grant-in-Aid for Scientific Research (C) (no. 19K05578) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Kakuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakuchi, R., Okura, Y. The Passerini three-component reaction of aldehyde end-functionalized polymers via RAFT polymerization using chain transfer agents featuring aldehyde. Polym J 52, 1057–1066 (2020). https://doi.org/10.1038/s41428-020-0368-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0368-z

This article is cited by

Search

Quick links