Abstract
We evaluated the absolute values of the heat capacity of polymer solids composed of polyesters and poly(oxide)s below the glass transition temperature. The frequencies of the skeletal and group-vibration modes were calculated by the Tarasov and Einstein equations, respectively. Furthermore, the estimated heat capacity was corrected by the difference between the heat capacities measured at constant pressure and at constant volume. The heat capacity contributing to the skeletal vibration can be expressed by one- and three-dimensional Tarasov equations, and the contribution of the group vibration can be determined by substituting the absorption frequency obtained from infrared absorption measurements for the frequency value in the Einstein equation. In this combination of equations, the absolute value of the heat capacity was obtained with only three fitting parameters. We thus reproduced the measured heat capacities of eight polyester and five poly(oxide) polymer solids with a carbon and oxygen backbone. The reproduced and experimental heat capacities of all samples except polycaprolactone and poly(3,3-bis(chloromethyl)oxetane) agreed within ±2.5%, and the errors for polycaprolactone and poly(3,3-bis(chloromethyl)oxetane) were within ±4.0%.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Dat 1982;11:1–392.
Gopal ESR. Specific heats at low temperatures. London: Springer; 2012.
Wunderlich B. Thermal analysis of polymeric materials. Heidelberg: Springer; 2005.
Šesták J, Mareš JJ, Hubík P, editors. Glassy, Amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties. Hot topics in thermal analysis and calorimetry 8. New York: Springer Science & Business Media; 2010.
Gibson GE, Giauque WF. The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of a glass exceeds that of a crystal at the absolute zero. J Am Chem Soc. 1923;45:93–104.
Haida O, Matsuo T, Suga H, Seki S. Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice. J Chem Thermodyn. 1974;6:815–25.
Tajima Y, Matsuo T, Suga H. Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides. J Phys Chem Solids. 1984;45:1135–44.
Kume Y, Muraoka H, Yamamuro O, Matsuo T. Deuteration-induced phase transition in ammonium hexachloroplumbate. J Chem Phys. 1988;108:4090–7.
Miyazaki Y, Wang Q, Sato A, Saito K, Yamamoto M, Kitagawa H, Mitani T, Sorai M. Heat capacity of the halogen-bridged mixed-valence complex Pt2 (dta)4I (dta = CH3CS2−). J Phys Chem B 2002;106:197–202.
Yamamura Y, Nakajima N, Tsuji T, Koyano M, Iwasa Y, Katayama S, Saito K, Sorai M. Low temperature heat capacities and Raman spectra of negative thermal expansion compounds ZrW2O8 and HfW2O8. Phys Rev B. 2002;66:014301.
Matsuo T, Maekawa T, Inaba A, Yamamuro O, Ohama M, Ichikawa M, Tsuchida T. Isotope-dependent crystalline phases at ambient temperature: Spectroscopic and calorimetric evidence for a deuteration-induced phase transition at 320 K in α-DCrO2. J Mol Struct. 2006;790:129–34.
Saito K, Sato A, Kikuchi K, Nishikawa H, Ikemoto I, Sorai M. Calorimetric study of metal-insulator transition in (DIMET) 2I 3. J Phys Soc Jpn. 2000;69:3602–6.
Yamamuro O, Tsukushi I, Lindqvist A, Takahara S, Ishikawa M, Matsuo T. Calorimetric study of glassy and liquid toluene and ethylbenzene: thermodynamic approach to spatial heterogeneity in glass-forming molecular liquids. J Phys Chem B. 1998;102:1605–9.
Pyda M, Bartkowiak M, Wunderlich B. Computation of heat capacities of solids using a general Tarasov equation. J Therm Anal. 1998;52:631–56.
Einstein A. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann der Phys. 1907;327:180–90.
Debye P. Zur Theorie der spezifischen Wärmen. Ann der Phys. 1912;344:789–839.
Nernst W, Lindemann FA. Spezifische Wärme und Quantentheorie. Z Elektrochem. 1911;17:817–27.
Tarasov VV. Heat capacity of anisotropic solids. Zh Fiz Khimii. 1950;24:111–28.
Tarasov VV, Yunitskii GA. Theory of heat capacity of layered-chain and structures. Russ J Phys Chem. 1965;39:1109–11.
Jianye W. Heat capacities of polymers in physical properties of polymers handbook. In: James E. Mark, editor. Chapter 9. New York: Springer; 2007. p. 145–54
Domalski ES, Hearing ED. Heat capacities and entropies of organic compounds in the condensed phase. Volume III. J Phys Chem Ref Data. 1996;25:1–525.
Wunderlich B. Motion in polyethylene. II. Vibrations in crystalline polyethylene. J Chem Phys. 1962;37:1207–16.
Pyda M, Nowak-Pyda E, Mays J, Wunderlich B. Heat capacity of poly (butylene terephthalate). J Polym Sci. 2004;42:4401–11.
Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. II. Heat capacity of poly(oxacyclobutane), –[–(CH2)3O–]– n, between 1.4 and 330 °K. Polym J. 1973;5:11–24.
Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. III. Poly(tetrahydrofuran), –[–(CH2)4O–]–n. Polym J. 1973;5:25–32.
Yoshida S, Suga H, Seki S. Thermodynamic studies of solid polyethers. IV. Poly(octamethylene oxide), –[–(CH2)8O–]–n. Polym J. 1973;5:33–40.
Yokota M, Sugane K, Tsukushi I, Shibata M Evaluation of the Heat capacity of amorphous polymers composed of a carbon backbone below the glass transition temperature. Polym J. 2020; https://doi.org/10.1038/s41428-020-0317-x.
Lebedev BV, Evstropov AA, Kiparisova EG, Belov VI. Thermodynamics of glycolide, polyglycolide and glycolide polymerization process in temperature-range 0–550 °K. Vysokomol Soedin A. 1978;20:29–37.
Lebedev B, Yevstropov A. Thermodynamic properties of polylactones. Makromol Chem. 1984;185:1235–53.
Beaumont RH, Clegg B, Gee G, Herbert JBM, Marks DJ, Roberts RC, Sims D. Heat capacities of propylene oxide and of some polymers of ethylene and propylene oxides. Polymer. 1966;7:401–17.
Clegg GA, Melia TP. Thermodynamics of polymerization of heterocyclic compounds part V. The heat capacity, entropy, enthalpy and free energy of 1,3-dioxolan and poly-1,3-dioxolan. Polymer. 1969;10:912–22.
Clegg GA, Melia TP. Thermodynamics of polymerization of heterocyclic compounds Part VI. The heat capacity, entropy, enthalpy and free energy of 1,3-dioxepan and poly-1,3-dioxepan. Polymer. 1970;11:245–52.
Karasz FE, Bair HE, O’reilly JM. Thermodynamic properties of poly (2,6-dimethyl-1,4-phenylene ether). J Polym Sci Part A-2: Polym Phys. 1968;6:1141–8.
Dainton FS, Evans DM, Hoare FE, Melia TP. Thermodynamic functions of linear high polymers. Polymer. 1962;3:263–321.
NIST Chemistry WebBook SRD69. 100 Bureau Drive Gaithersburg, MD 20899, 301-975-2000. 1901. https://webbook.nist.gov/cgi/cbook.cgi?ID=C106989&Units=SI&Mask=80#IR-Spec. Accessed 7 Nov 2019.
Kister G, Cassanas G, Vert M. Morphology of poly (glycolic acid) by IR and Raman spectroscopies. Spectrochim Acta Part A 1997;53:1399–403.
Krimm S. Infrared spectra of high polymers. Fortschr Hochpolym Forsch Bd. 1960;2:51–172.
Vairon J-P, Spassky N, Industrial cationic polymerizations: an overview. In: Matyjaszewski K, editor. Cationic polymerizations: mechanisms, synthesis and applications. CRC Press; 1996. p. 683–741.
Yokota M, Nishiyama E, Fujimura J, Tsukushi I. Excess heat capacity for low-molecular-weight amorphous polystyrene below the glass-transition temperature: Influence of end groups. Polym J. 2020; https://doi.org/10.1038/s41428-020-0310-4.
Acknowledgements
The authors would like to thank Enago (www.enago.jp) for the English language review.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yokota, M., Tsukushi, I. Heat capacities of polymer solids composed of polyesters and poly(oxide)s, evaluated below the glass transition temperature. Polym J 52, 1103–1111 (2020). https://doi.org/10.1038/s41428-020-0364-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41428-020-0364-3
This article is cited by
-
Configurational heat capacity of various polymers above the glass transition temperature
Polymer Journal (2022)
-
Analysis of the configurational heat capacity of polystyrene and its monomer and oligomer above the glass transition temperature
Polymer Journal (2022)
-
Estimation of the configurational heat capacity of polyisobutylene, isobutane and 2,2,4-isomethylpentane above the glass transition temperature
Polymer Journal (2021)
-
Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature
Polymer Journal (2020)