Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Formation of polylactide stereocomplex crystallites and the electrical properties of carbon black-filled PLLA/PDLA composites

Abstract

A mixture of the enantiomers of polylactide (PLA), PLLA, and PDLA forms a stereocomplex (SC) crystal. In this study, we prepared carbon black (CB)-filled PLLA/PDLA composites with 10 and 20 wt% PDLA by melt blending the mixture at a temperature higher than the melting point of the homocrystal and lower than that of the SC crystal. We quantitatively investigated the relationship between the degree of crystallinity of the SC crystal (χc,SC) and the filler dispersion by analyzing Morisita’s index (Iδ) determined from scanning electron microscopy images and through direct current (DC) measurements and alternating current (AC) impedance measurements. Iδ as a function of the quadrat number of the CB-filled PLLA composite exhibited an aggregated pattern; however, Iδ of the CB-filled PLLA/PDLA blends followed a random or uniform pattern with increasing χc,SC. DC measurements indicated that the percolation threshold also increases with χc,SC. The equivalent electrical circuit was determined from AC impedance measurements. The resistance of the polymer matrix in the gap between the CB agglomerates increased with χc,SC, whereas its capacitance decreased with χc,SC. These results reveal that the increase in the number of SC crystals formed during melt blending improves the filler distribution to achieve a uniform pattern.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Okihara T, Tsuji M, Kawaguchi A, Katayama K, Tsuji H, Hyon S-H, Ikeda Y. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J Macromol Sci Phys B. 1991;30:119–40. https://doi.org/10.1080/00222349108245788.

    Article  CAS  Google Scholar 

  2. Li Y, Xin S, Bian Y, Dong Q, Han C, Xu K, Dong L. Stereocomplex crystallite network in poly(D,L-lactide): formation, structure and the effect on shape memory behaviors and enzymatic hydrolysis of poly(D,L-lactide). RSC Adv. 2015;5:24352–62. https://doi.org/10.1039/C5RA01624J.

    Article  CAS  Google Scholar 

  3. Xu H, Feng Z-X, Xie L, Hakkarainen M. Graphene oxide-driven design of strong and flexible biopolymer barrier films: From smart crystallization control to affordable engineering. ACS Sustain Chem Eng. 2016;4:334–49. https://doi.org/10.1021/acssuschemeng.5b01273.

    Article  CAS  Google Scholar 

  4. Jing Z, Shi X, Zhang G, Li J. Rheology and crystallization behavior of PLLA/TiO2-g-PDLA composites. Polym Adv Technol. 2015;26:528–37. https://doi.org/10.1002/pat.3485.

    Article  CAS  Google Scholar 

  5. Shi X, Zhang G, Phuong TV, Lazzeri A. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules. 2015;20:1579–93. https://doi.org/10.3390/molecules20011579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sun Y, He C. Synthesis and stereocomplex crystallization of poly(lactide)−graphene oxide nanocomposites. ACS Macro Lett. 2012;1:709–13. https://doi.org/10.1021/mz300131u.

    Article  CAS  Google Scholar 

  7. Cui CH, Yan D-X, Pang H, Jia L-C, Xu X, Yang S, Xu J-Z, Li Z-M. A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem Eng J. 2017;323:29–36. https://doi.org/10.1016/j.cej.2017.04.050.

    Article  CAS  Google Scholar 

  8. Liu H, Bai D, Bai H, Zhang Q, Fu Q. Manipulating the filler network structure and properties of polylactide/carbon black nanocomposites with the aid of stereocomplex crystallites. J Phys Chem C. 2018;122:4232–40. https://doi.org/10.1021/acs.jpcc.8b00417.

    Article  CAS  Google Scholar 

  9. Lebedev SM, Gefle OS. Evaluation of electric, morphological and thermal properties of thermally conductive polymer composites. Appl Therm Eng. 2015;91:875–82. https://doi.org/10.1016/j.applthermaleng.2015.08.046.

    Article  CAS  Google Scholar 

  10. Das K, Ray D, Banerjee I, Bandyopadhyay NR, Sengupta S, Mohanty AK, Misra M. Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties. J Appl Polym Sci. 2010;118:143–51. https://doi.org/10.1002/app.32345.

    Article  CAS  Google Scholar 

  11. Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng. 2013;74:211–32. https://doi.org/10.1016/j.mser.2013.06.001.

    Article  Google Scholar 

  12. Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38:1629–52. https://doi.org/10.1016/j.progpolymsci.2013.05.008.

    Article  CAS  Google Scholar 

  13. Zhang Y, Heo Y-J, Son Y-R, In I, An K-H, Kim B-J, Park S-J. Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 2019;142:445–60. https://doi.org/10.1016/j.carbon.2018.10.077.

    Article  CAS  Google Scholar 

  14. Russo P, Cammarano S, Bilotti E, Peijs T, Cerruti P, Acierno D. Physical properties of poly lactic acid/clay nanocomposite films: effect of filler content and annealing treatment. J Appl Polym Sci. 2014;131:39798 https://doi.org/10.1002/app.39798.

    Article  CAS  Google Scholar 

  15. Morishita M. Measuring the dispersion and the analysis of distribution patterns. Ser E Biol. 1959;2:215–35.

    Google Scholar 

  16. Karasek L, Sumita M. Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites. J Mater Sci. 1996;31:281–9. https://doi.org/10.1007/BF01139141.

    Article  CAS  Google Scholar 

  17. Kim D, Lee JS, Barry CMF, Mead JL. Microscopic measurement of the degree of mixing for nanoparticles in polymer nanocomposites by TEM images. Microsc Res Tech. 2007;70:539–46. https://doi.org/10.1002/jemt.20478.

    Article  PubMed  CAS  Google Scholar 

  18. Kim D, Lee JS, Barry CMF, Mead JL. Effect of fill factor and validation of characterizing the degree of mixing in polymer nanocomposites. Polym Eng Sci. 2007;47:2049–56. https://doi.org/10.1002/pen.20920.

    Article  CAS  Google Scholar 

  19. Chisholm BJ, Moore RB, Barber G, Khouri F, Hempstead A, Larsen M, Olson E, Keley J, Balch G, Caraher J. Nanocomposites derived from sulfonated poly(butylene terephthalate). Macromolecules. 2002;35:5508–16. https://doi.org/10.1021/ma012224n.

    Article  CAS  Google Scholar 

  20. Alig I, Lellinger D, Dudkin SM, Pötschke P. Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer. 2007;48:1020–9. https://doi.org/10.1016/j.polymer.2006.12.035.

    Article  CAS  Google Scholar 

  21. Alig I, Lellinger D, Engel M, Skipa T, Pötschke P. Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer. 2008;49:1902–9. https://doi.org/10.1016/j.polymer.2008.01.073.

    Article  CAS  Google Scholar 

  22. Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer. 2012;53:4–28. https://doi.org/10.1016/j.polymer.2011.10.063.

    Article  CAS  Google Scholar 

  23. Battisti A, Skordos AA, Partridge IK. Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Tech. 2010;70:633–7. https://doi.org/10.1016/j.compscitech.2009.12.017.

    Article  CAS  Google Scholar 

  24. Hom S, Bhattacharyya AR, Khare RA, Kulkarni AR, Saroop M, Biswas A. PP/ABS blends with carbon black: Morphology and electrical properties. J Appl Polym Sci. 2009;112:998–1004. https://doi.org/10.1002/app.29543.

    Article  CAS  Google Scholar 

  25. Wang Y-J, Pan Y, Zhang X-W, Tan K. Impedance spectra of carbon black filled high-density polyethylene composites. J Appl Polym Sci. 2005;98:1344–50. https://doi.org/10.1002/app.22297.

    Article  CAS  Google Scholar 

  26. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci. 1992;270:134–9. https://doi.org/10.1007/BF00652179.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Asai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iguchi, Y., Miyamoto, K., Akasaka, S. et al. Formation of polylactide stereocomplex crystallites and the electrical properties of carbon black-filled PLLA/PDLA composites. Polym J 52, 1093–1102 (2020). https://doi.org/10.1038/s41428-020-0354-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0354-5

Search

Quick links