Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Guest-responsive supramolecular hydrogels expressing selective sol–gel transition for sulfated glycosaminoglycans

Abstract

This paper describes the stimuli-responsive hydrogels constructed from bola-type amphiphiles composed of two dipeptides containing phenylalanine attached to the ends of a hydrophobic tetrathiophene. The hydrogel formation ability of the amphiphiles was affected by the N-terminal amino acid residue, which is an amphiphile-possessing phenylalanine-lysine sequence that formed a hydrogel under limited pH conditions. Gel formation occurred because of the phase transition of the gelator assembly from a granular aggregate to a fibrous architecture, in a process controlled by pH. This stimuli-responsive sol–gel transition was also accomplished by the addition of an anionic polymer, and sulfated glycosaminoglycans were successfully discriminated using the hydrogel system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–7.

    Article  CAS  Google Scholar 

  2. Tovar JD. Supramolecular construction of optoelectronic biomaterials. Chem Res. 2013;46:1527–37.

    Article  CAS  Google Scholar 

  3. Shigemitsu H, Hamachi I. Design strategies of stimuli-responsive supramolecular hydrogels relying on structural analyses and cell-mimicking approaches. Acc Chem Res. 2017;50:740–50.

    Article  CAS  Google Scholar 

  4. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

    Article  CAS  Google Scholar 

  5. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99.

    Article  CAS  Google Scholar 

  6. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21:1171–8.

    Article  CAS  Google Scholar 

  7. Zhou J, Li J, Du X, Xu B. Supramolecular biofunctional materials. Biomaterials. 2017;129:1–27.

    Article  CAS  Google Scholar 

  8. Makama P, Gazit E. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. Chem Soc Rev. 2018;47:3406–20.

    Article  Google Scholar 

  9. Fleming S, Ulijn RV. Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev. 2014;43:8150–77.

    Article  CAS  Google Scholar 

  10. Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc. 2010;132:2719–28.

    Article  CAS  Google Scholar 

  11. Zhang Y, Gu H, Yang Z, Xu B. Supramolecular hydrogels respond to ligand-receptor interaction. J Am Chem Soc. 2003;125:13680–1.

    Article  CAS  Google Scholar 

  12. Berdugo C, Nalluri SKM, Javid N, Escuder B, Miravet JF, Ulijn RV. Dynamic peptide library for the discovery of charge transfer hydrogels. ACS Appl Mater Interfaces. 2015;7:25946–54.

    Article  CAS  Google Scholar 

  13. Ikeda M. Stimuli-responsive supramolecular systems guided by chemical reactions. Polym J. 2019;51:371–80.

    Article  CAS  Google Scholar 

  14. Mahler A, Reches M, Rechter M, Cohen S, Gazit E. Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater. 2006;18:1365–70.

    Article  CAS  Google Scholar 

  15. Raeburn J, Mendoza-Cuenca C, Cattoz BN, Little MA, Terry AE, Cardoso AZ, et al. The effect of solvent choice on the gelation and final hydrogel properties of Fmoc–diphenylalanine. Soft Matter. 2015;11:927–35.

    Article  CAS  Google Scholar 

  16. Martin AD, Wojciechowski JP, Warren H, in het Panhuisb M, Thordarson P. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. Soft Matter. 2016;12:2700–7.

    Article  CAS  Google Scholar 

  17. Ikeda M, Tanida T, Yoshii T, Hamachi I. Rational molecular design of stimulus-responsive supramolecular hydrogel based on dipeptides. Adv Mater. 2011;23:2819–22.

    Article  CAS  Google Scholar 

  18. Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K, et al. Installing logic-gate response to a variety of biological substances in supramolecular hydrogel-enzyme hybrids. Nat Chem. 2014;6:511–8.

    Article  CAS  Google Scholar 

  19. Sukumaran SB, Vakayil KP, Ajayaghosh A. Functional π-gelators and their applications. Chem Rev. 2014;114:1973–2129.

    Article  Google Scholar 

  20. Kang S, Lee M, Lee D. Weak links to differentiate weak bonds: size-selective response of π-conjugated macrocycle gels to ammonium ions. J Am Chem Soc. 2019;141:5980–6.

    Article  CAS  Google Scholar 

  21. Li Y, Duan P, Liu M. Solvent-regulated self-assembly of an achiral donor-acceptor complex in confined chiral nanotubes: chirality transfer, inversion and amplification. Chem Eur J. 2017;23:8225–31.

    Article  CAS  Google Scholar 

  22. Tovar JD. Supramolecular construction of optoelectronic biomaterials. Acc Chem Res. 2013;46:1527–37.

    Article  CAS  Google Scholar 

  23. Singha N, Srivastava A, Pramanik B, Ahmed S, Dowari P, Chowdhuri S, et al. Unusual confinement properties of a water insoluble small peptide hydrogel. Chem Sci. 2019;10:5920–8.

    Article  CAS  Google Scholar 

  24. Pramanik B, Ahmed S, Singha N, Das BK, Dowari P, Das D. Unorthodox combination of cation-π and charge-transfer interactions within a donor-acceptor pair. Langmuir. 2019;35:478–88.

    Article  CAS  Google Scholar 

  25. Pati C, Ghosh K. Aryl ethers decorated gallic acid-naphthalimide conjugate: aggregation and sensing towards amines and F-. Supramol Chem. 2019;31:732–44.

    Article  CAS  Google Scholar 

  26. Schmuck C, Samanta K, Ehlers M. Two-component self-assembly: hierarchical formation of pH-switchable supramolecular networks by pi-pi induced aggregation of ion pairs. Chem Eur J. 2016;22:15242–7.

    Article  CAS  Google Scholar 

  27. Chen Y, Gong G, Fan Y, Zhou Q, Zhang Q, Yao H, et al. A novel AIE-based supramolecular polymer gel serves as an ultrasensitive detection and efficient separation material for multiple heavy metal ions. Soft Matter. 2019;15:6878–84.

    Article  CAS  Google Scholar 

  28. Dawn A, Shiraki T, Ichikawa H, Takada A, Takahashi Y, Tsuchiya Y, et al. Stereochemistry-dependent, mechanoresponsive supramolecular host assemblies for fullerenes: a guest-induced enhancement of thixotropy. J Am Chem Soc. 2012;134:2161–71.

    Article  CAS  Google Scholar 

  29. Samanta SK, Dey N, Kumari N, Biswakarma D, Bhattacharya S. Multimodal ion sensing by structurally simple pyridine-end oligo p-phenylenevinylenes for sustainable detection of toxic industrial waste. ACS Sustain Chem Eng. 2019;7:12304–14.

    Article  CAS  Google Scholar 

  30. Xue P, Yao B, Ding J, Shen Y, Wang P, Lu R, et al. Strong fluorescence film of dicyano oligo(p-phenylenevinylene) supramolecular gel for aromatic amine vapors detection. Chem Sel. 2017;2:2841–6.

    CAS  Google Scholar 

  31. Bhattacharjee S, Bhattacharya S. Pyridylenevinylene based Cu2+-specific, injectable metallo(hydro)gel: thixotropy and nanoscale metal-organic particles. Chem Commun. 2014;50:11690–3.

    Article  CAS  Google Scholar 

  32. Liyanage W, Ardona HAM, Mao HQ, Tovar JD. Cross-linking approaches to tuning the mechanical properties of peptide π-electron hydrogels. Bioconj Chem. 2017;28:751–9.

    Article  CAS  Google Scholar 

  33. Sobczuk AA, Tsuchiya Y, Shiraki T, Tamaru SI, Shinkai S. Creation of chiral thixotropic gels through a crown-ammonium interaction and their application to a memory-erasing recycle system. Chem Eur J. 2012;18:2832–8.

    Article  CAS  Google Scholar 

  34. Sobczuk AA, Tamaru SI, Shinkai S. New strategy for controlling the oligothiophene aggregation mode utilizing the gel-to-sol phase transition induced by crown-alkali metal interactions. Chem Commun. 2011;47:3093–5.

    Article  CAS  Google Scholar 

  35. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–32.

    Article  CAS  Google Scholar 

  36. Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA. 1981;78:3824–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Prof. Hirotaka Ihara, Prof. Makoto Takafuji, and Prof. Yutaka Kuwahara for their kind assistance with the dynamic viscoelasticity measurements. This work was supported by JSPS Grants-in-Aid for Scientific Research C (18K05067, 17K05848). The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-ichi Tamaru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuroda, N., Tounoue, Y., Noguchi, K. et al. Guest-responsive supramolecular hydrogels expressing selective sol–gel transition for sulfated glycosaminoglycans. Polym J 52, 939–946 (2020). https://doi.org/10.1038/s41428-020-0341-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0341-x

Search

Quick links