Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enzyme responsive properties of amphiphilic urea supramolecular hydrogels

Abstract

Amphiphilic ureas with hydrophilic lactose groups form transparent supramolecular hydrogels. Their gelation abilities are sensitive to the length of the alkyl chain. Amphiphilic ureas bearing hexyl, heptyl, octyl, and nonyl groups form supramolecular hydrogels, but amphiphilic ureas bearing decyl groups or longer alkyl groups do not show gelation ability. The gradual gel-to-sol phase transition of the supramolecular hydrogel is triggered by adding β-galactosidase (β-Gal) as a result of enzymatic hydrolysis of the lactose moiety. Supramolecular hydrogels could stably entrap cationic organic dyes, such as rhodamine 6G (Rh6G), even in water. The entrapped Rh6G could be gradually released in the presence of β-Gal, along with the gel-to-sol phase transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev. 2004;104:1201–18.

    Article  CAS  Google Scholar 

  2. de Loos M, Feringa BL, van Esch JH. Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem. 2005;2005:3615–31.

    Article  Google Scholar 

  3. Mukai M, Kogiso M, Aoyagi M, Asakawa M, Shimizu T, Minamikawa H. Supramolecular nanofiber formation from commercially available arginine and a bola-type diacetylenic diacid via hydrogelation. Polym J. 2012;44:646–50.

    Article  CAS  Google Scholar 

  4. Yu G, Yan X, Han C, Huang F. Characterization of supramolecular gels. Chem Soc Rev. 2013;42:6697–722.

    Article  CAS  Google Scholar 

  5. Du X, Zhou J, Xu B. Supramolecular hydrogels made of basic biological building blocks. Chem Asian J. 2014;9:1446–72.

    Article  CAS  Google Scholar 

  6. Weiss RG. The past, present, and future of molecular gels. What is the status of the field, and where is it going? J Am Chem Soc. 2014;136:7519–30.

    Article  CAS  Google Scholar 

  7. Hanabusa K, Suzuki M. Physical gelation by low-molecular-weight compounds and development of gelators. Bull Chem Soc Jpn. 2016;89:174–82.

    Article  CAS  Google Scholar 

  8. Friggeri A, Feringa BL, van Esch J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. J Control Release. 2004;97:241–8.

    Article  CAS  Google Scholar 

  9. Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A, Gough JE, et al. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater. 2006;18:611–4.

    Article  CAS  Google Scholar 

  10. Hirst AR, Escuder B, Miravet JF, Smith DK. High‐tech applications of self‐assembling supramolecular nanostructured gel‐phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed. 2008;47:8002–18.

    Article  CAS  Google Scholar 

  11. Boekhoven J, Stupp SI. 25th anniversary article: supramolecular materials for regenerative medicine. Adv Mater. 2014;26:1642–59.

    Article  CAS  Google Scholar 

  12. Du X, Zhou J, Shi J, Xu B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev. 2015;115:13165–307.

    Article  CAS  Google Scholar 

  13. Yamanaka M. Supramolecular gel electrophoresis. Polym J. 2018;50:627–35.

    Article  CAS  Google Scholar 

  14. Komatsu H, Matsumoto S, Tamaru S, Kaneko K, Ikeda M, Hamachi I. Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release. J Am Chem Soc. 2009;131:5580–5.

    Article  CAS  Google Scholar 

  15. Yamanaka M, Haraya N, Yamamichi S. Chemical stimuli-responsive supramolecular hydrogel from amphiphilic tris-urea. Chem Asian J. 2011;6:1022–5.

    Article  CAS  Google Scholar 

  16. Sun Z, Li Z, He Y, Shen R, Deng L, Yang M, et al. Ferrocenoyl phenylalanine: a new strategy toward supramolecular hydrogels with multistimuli responsive properties. J Am Chem Soc. 2013;135:13379–86.

    Article  CAS  Google Scholar 

  17. Yamanaka M, Yanai K, Zama Y, Tsuchiyagaito J, Yoshida M, Ishii A, et al. Cation-tuned stimuli-responsive and optical properties of supramolecular hydrogels. Chem Asian J. 2015;10:1299–303.

    Article  CAS  Google Scholar 

  18. Ikeda M. Stimuli-responsive supramolecular systems guided by chemical reactions. Polym J. 2019;51:371–80.

    Article  CAS  Google Scholar 

  19. Yang Z, Liang G, Wang L, Xu B. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc. 2006;128:3038–43.

    Article  CAS  Google Scholar 

  20. Vemula KP, Li J, John G. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drug. J Am Chem Soc. 2006;128:8932–8.

    Article  CAS  Google Scholar 

  21. Das AK, Colins R, Ulijn RV. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small. 2008;4:279–87.

    Article  CAS  Google Scholar 

  22. Ikeda M, Tanida T, Yoshii T, Hamachi I. Rational molecular design of stimuli-responsive supramolecular hydrogels based on dipeptides. Adv Mater. 2011;23:2819–22.

    Article  CAS  Google Scholar 

  23. Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M, et al. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc. 2015;137:770–5.

    Article  CAS  Google Scholar 

  24. Dong L, Miao Q, Hai Z, Yuan Y, Liang G. Enzymatic hydrogelation-induced fluorescence turn-off for sensing alkaline phosphatase. Anal Chem. 2015;87:6475–8.

    Article  CAS  Google Scholar 

  25. Fores JR, Criado-Gonzalez M, Schmutz M, Blanck C, Schaaf P, Boulmedais F, et al. Protein-induced low molecular weight hydrogelator self-assembly through a self-sustaining process. Chem Sci. 2019;10:4761–6.

    Article  Google Scholar 

  26. Akama S, Maki T, Yamanaka M. Enzymatic hydrolysis-induced degradation of a lactose-coupled supramolecular hydrogel. Chem Commun. 2018;54:8814–7.

    Article  CAS  Google Scholar 

  27. Bridiau N, Benmansour M, Legoy MD, Maugard T. One-pot stereoselective synthesis of β-N-aryl-glycosides by N-glycosylation of aromatic amines: application to the synthesis of tumor-associated carbohydrate antigen building blocks. Tetrahedron. 2007;63:4178–83.

    Article  CAS  Google Scholar 

  28. Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JLS, et al. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science. 2015;348:1147–51.

    Article  CAS  Google Scholar 

  29. Holmes R. The intestinal brush border. Gut. 1971;12:668–77.

    Article  CAS  Google Scholar 

  30. Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. 2014;11:901–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-aid for the Scientific Research (Nos. 15H03826 and 17H06374) the Japan Society for the Promotion of Science (JSPS) or the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Yamanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maki, T., Yoshisaki, R., Akama, S. et al. Enzyme responsive properties of amphiphilic urea supramolecular hydrogels. Polym J 52, 931–938 (2020). https://doi.org/10.1038/s41428-020-0333-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0333-x

Search

Quick links