Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

In vitro fabrication and application of engineered vascular hydrogels

Abstract

Vascularization is one of the most challenging areas of tissue engineering research. Vascular engineering holds the key to counteracting cardiovascular diseases, which are the main cause of death worldwide, and to performing prevascularization of regenerated in vitro tissues to improve implantation survival. Hydrogels have been thoroughly studied in this field due to their mechanical properties and tissue-like characteristics, including their water content, biocompatibility, and efficient transport of nutrients and metabolites; these characteristics make them applicable to vascular reconstruction. In this review, we focused on the fabrication of blood vessels using biofunctional hydrogels and compared natural and synthetic materials. Various manufacturing methods were also discussed, as well as their applications in modeling tissue in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sparks CH. Autogenous grafts made to order. Ann Thorac Surg. 1969;8:104–13.

    CAS  PubMed  Google Scholar 

  2. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.

    CAS  PubMed  Google Scholar 

  3. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345–60.

    CAS  Google Scholar 

  4. Hunt JA, Chen R, Veen TV, Bryan N. Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B. 2014;2:5319–38.

    CAS  PubMed  Google Scholar 

  5. Blache U, Ehrbar M. Inspired by nature: hydrogels as versatile tools for vascular engineering. Adv Wound Care. 2018;7:232–46.

    Google Scholar 

  6. Nishiguchi A, Matsusaki M, Asano Y, Shimoda H, Akashi M. Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures. Biomaterials. 2014;35:4739–48.

    CAS  PubMed  Google Scholar 

  7. Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials. 2010;31:3903–9.

    CAS  PubMed  Google Scholar 

  8. Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, et al. Spheroid-based engineering of a human vasculature in mice. Nat Methods. 2008;5:439–45.

    CAS  PubMed  Google Scholar 

  9. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–51.

    CAS  PubMed  Google Scholar 

  10. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6:623–33.

    CAS  PubMed  Google Scholar 

  11. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53.

    CAS  PubMed  Google Scholar 

  12. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6:1285–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruther F, Distler T, Boccaccini AR, Detsch R. Biofabrication of vessel-like structures with alginate di-aldehyde-gelatin (ADA-GEL) bioink. J Mater Sci Mater Med. 2019;30:1–14.

    CAS  Google Scholar 

  14. Kinoshita K, Iwase M, Yamada M, Yajima Y, Seki M. Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms. Biotechnol J. 2016;11:1415–23.

    CAS  PubMed  Google Scholar 

  15. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010;9:518–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kubota K, Kogure H, Masuda Y, Toyama H, Kita R, Takahashi A, et al. Gelation dynamics and gel structure of fibrinogen. Colloids Surf B. 2004;38:103–9.

    CAS  Google Scholar 

  17. Nehls V, Drenckhahn D. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res. 1995;50:311–22.

    CAS  PubMed  Google Scholar 

  18. Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008;14:199–215.

    CAS  PubMed  Google Scholar 

  19. Schense JC, Hubbell JA. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjugate Chem. 1999;10:75–81.

    CAS  Google Scholar 

  20. Montaño I, Schiestl C, Schneider J, Pontiggia L, Luginbuhl J, Biedermann T, et al. Formation of human capillaries in vitro: the engineering of prevascularized matrices. Tissue Eng Part A. 2010;16:269–82.

    PubMed  Google Scholar 

  21. Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CCW, et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A. 2009;15:1363–71.

    CAS  PubMed  Google Scholar 

  22. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA. 2016;113:3179–84.

    CAS  PubMed  Google Scholar 

  23. Davis GE, Speichinger KR, Norden PR, Kim DJ, Bowers SLK. Endothelial cell polarization during lumen formation, tubulogenesis, and vessel maturation in 3D extracellular matrices. In: Ebnet K. editor. Cell Polarity 1. Springer International Publishing Switzerland. 2015. p. 205–20.

  24. Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, et al. A collagen-chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A. 2010;16:3099–109.

    CAS  PubMed  Google Scholar 

  25. Park KM, Gerecht S. Hypoxia-inducible hydrogels. Nat Commun. 2014;5:1–12.

    CAS  Google Scholar 

  26. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15:378–86.

    CAS  PubMed  Google Scholar 

  27. Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–90.

    CAS  PubMed  Google Scholar 

  28. Li S, Nih LR, Bachman H, Fei P, Li Y, Nam E, et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat Mater. 2017;16:953–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kageyama T, Kakegawa T, Osaki T, Enomoto J, Ito T, Nittami T, et al. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels. Biofabrication. 2014;6:025006.

    PubMed  Google Scholar 

  30. Hanjaya-Putra D, Bose V, Shen YI, Yee J, Khetan S, Fox-Talbot K, et al. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood. 2011;118:804–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanjaya-Putra D, Wong KT, Hirotsu K, Khetan S, Burdick JA, Gerecht S. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials. 2012;33:6123–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kusuma S, Shen YI, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci USA. 2013;110:12601–6.

    CAS  PubMed  Google Scholar 

  33. Shen YI, Cho H, Papa AE, Burke JA, Chan XY, Duh EJ, et al. Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials. 2016;102:107–19.

    CAS  PubMed  Google Scholar 

  34. Chen R, Hunt JA. Biomimetic materials processing for tissue-engineering processes. J Mater Chem. 2007;17:3974–9.

    CAS  Google Scholar 

  35. Chandra P, Atala A. Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clin Sci. 2019;133:1115–35.

    CAS  PubMed  Google Scholar 

  36. Kyburz KA, Anseth KS. Synthetic mimics of the extracellular matrix: how simple is complex enough? Ann Biomed Eng. 2015;43:489–500.

    PubMed  PubMed Central  Google Scholar 

  37. Moon JJ, Saik JE, Poché RA, Leslie-Barbick JE, Lee SH, Smith AA, et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials. 2010;31:3840–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cuchiara MP, Gould DJ, McHale KM, Dickinson ME, West JL. Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv Funct Mater. 2012;22:4511–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vigen M, Ceccarelli J, Putnam AJ. Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol Biosci. 2014;14:1368–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Blache U, Metzger S, Vallmajo-Martin Q, Martin I, Djonov V, Ehrbar M. Dual role of mesenchymal stem cells allows for microvascularized bone tissue-like environments in PEG hydrogels. Adv Healthc Mater. 2016;5:489–98.

    CAS  PubMed  Google Scholar 

  41. Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26:631–43.

    CAS  PubMed  Google Scholar 

  42. Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang Y, Borenstein JT, et al. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater. 2006;18:165–9.

    CAS  Google Scholar 

  43. Yu X, Xiao J, Dang F. Surface modification of poly(dimethylsiloxane) using ionic complementary peptides to minimize nonspecific protein adsorption. Langmuir. 2015;31:5891–8.

    CAS  PubMed  Google Scholar 

  44. Hauser CAE, Zhang S. Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev. 2010;39:2780–90.

    CAS  PubMed  Google Scholar 

  45. Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater. 2012;22:2027–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin RZ, Chen YC, Moreno-Luna R, Khademhosseini A, Melero-Martin JM. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials. 2013;34:6785–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shalumon KT, Deepthi S, Anupama MS, Nair SV, Jayakumar R, Chennazhi KP. Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol. 2015;72:1048–55.

    CAS  PubMed  Google Scholar 

  48. Singh RK, Seliktar D, Putnam AJ. Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials. 2013;34:9331–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dikovsky D, Bianco-Peled H, Seliktar D. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials. 2006;27:1496–506.

    CAS  PubMed  Google Scholar 

  50. Ali S, Saik JE, Gould DJ, Dickinson ME, West JL. et al. Immobilization of cell-adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. Biores Open Access. 2013;2:241–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Suresh V, West JL. Adipose-derived stem cells can contribute to vascular network formation in poly(ethylene Glycol) hydrogel scaffolds. Regen Eng Transl Med. 2019;5:180–9.

    CAS  Google Scholar 

  52. Chwalek K, Tsurkan MV, Freudenberg U, Werner C. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci Rep. 2014;4:4–11.

    Google Scholar 

  53. Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U, et al. Defined polymer-peptide conjugates to form cell-instructive starpeg-heparin matrices in situ. Adv Mater. 2013;25:2606–10.

    CAS  PubMed  Google Scholar 

  54. Sarker MD, Naghieh S, Sharma NK, Chen X. 3D biofabrication of vascular networks for tissue regeneration: a report on recent advances. J Pharm Anal. 2018;8:277–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y, et al. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials. 2010;31:1646–54.

    CAS  PubMed  Google Scholar 

  56. Nishiguchi A, Yoshida H, Matsusaki M, Akashi M. Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv Mater. 2011;23:3506–10.

    CAS  PubMed  Google Scholar 

  57. Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505–10.

    CAS  PubMed  Google Scholar 

  58. Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13:1489–1500.

    CAS  PubMed  Google Scholar 

  59. Tsao CW. Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines. 2016;7:225.

    PubMed Central  Google Scholar 

  60. Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip. 2013;13:3246–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. He J, Mao M, Liu Y, Shao J, Jin Z, Li D. Fabrication of nature-inspired microfluidic network for perfusable tissue constructs. Adv Healthc Mater. 2013;2:1108–13.

    CAS  PubMed  Google Scholar 

  62. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017;4:185–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Yin Y, Ozbolat IT. Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med. 2013;4:1–7.

    Google Scholar 

  64. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DHT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11:768–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Heintz KA, Bregenzer ME, Mantle JL, Lee KH, West JL, Slater JH. Fabrication of 3D biomimetic microfluidic networks in hydrogels. Adv Health Mater. 2016;5:2153–60.

    CAS  Google Scholar 

  66. Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14:2202–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Arrigoni C, Bongio M, Talò G, Bersini S, Enomoto J, Fukuda J, et al. Rational design of prevascularized large 3D tissue constructs using computational simulations and biofabrication of geometrically controlled microvessels. Adv Healthc Mater. 2016;5:1617–26.

    CAS  PubMed  Google Scholar 

  68. Brandenberg N, Lutolf MP. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv Mater. 2016;28:7450–6.

    CAS  PubMed  Google Scholar 

  69. Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa Y, Nakayama M, et al. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol. 2017;9:506–18.

    Google Scholar 

  70. Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 2018;180:117–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee S, Chung M, Lee SR, Jeon NL. 3D brain angiogenesis model to reconstitute functional human blood-brain barrier in vitro. Biotechnol Bioeng. 2020;117:748–62.

    CAS  PubMed  Google Scholar 

  72. Hikimoto D, Nishiguchi A, Matsusaki M, Akashi M. High-throughput blood- and lymph-capillaries with open-ended pores which allow the transport of drugs and cells. Adv Healthc Mater. 2016;5:1969–78.

    CAS  PubMed  Google Scholar 

  73. Sisak MAA, Louis F, Chang YT, Matsusaki M. To be submitted.

  74. Houston P, Dickson MC, Ludbrook V, White B, Schwachtgen JL, McVey JH, et al. Fluid shear stress induction of the tissue factor promoter in vitro and in vivo is mediated by Egr-1. Arterioscler Thromb Vasc Biol. 1999;19:281–9.

    CAS  PubMed  Google Scholar 

  75. Li YSJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.

    PubMed  Google Scholar 

  76. Bond AR, Iftikhar S, Bharath AA, Weinberg PD. Morphological evidence for a change in the pattern of aortic wall shear stress with age. Arterioscler Thromb Vasc Biol. 2011;31:543–50.

    CAS  PubMed  Google Scholar 

  77. Huang B, Yang F, Shu W, Chen Z, Chen M. Functional roles of shear stress in vascular endothelial cells. Cell Immunol Serum Biol. 2017;3:64–67.

    Google Scholar 

  78. Ohura N, Yamamoto K, Ichioka S, Sokabe T, Nakatsuka H, Baba A, et al. Global analysis of shear stress-responsive genes in vascular endothelial cells. J Atheroscler Thromb. 2003;10:304–13.

    CAS  PubMed  Google Scholar 

  79. Phan DTT, Wang X, Craver BM, Sobrino A, Zhao D, Chen JC, et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip. 2017;17:511–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nguyen EH, Daly WT, Le NNT, Farnoodian M, Belair DG, Schwartz MP, et al. Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat Biomed Eng. 2017;1:1–14.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Grant-in-Aid for Scientific Research (B) (17H02099), the JST Mirai-Program (18077228), the Bilateral Joint Research Projects of the JSPS and an AMED Grant (JP18be0304207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiya Matsusaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Sisak, M.A., Louis, F. & Matsusaki, M. In vitro fabrication and application of engineered vascular hydrogels. Polym J 52, 871–881 (2020). https://doi.org/10.1038/s41428-020-0331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0331-z

This article is cited by

Search

Quick links