Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Recent advances in multi-temperature-responsive polymeric materials

Abstract

Temperature-responsive (or thermoresponsive) polymers belong to the most studied class of smart polymers and are mainly classified into two types based on their temperature-responsive behavior: lower critical solution temperature (LCST) and upper critical solution temperature (UCST). Based on polymeric design, when two temperature-responsive segments are connected through a covalent bond at each chain end, the block copolymers are expected to show a dual-temperature-responsive property upon conformational changes. Moreover, in recent years, multi-temperature-responsive properties that can represent complex states/structures have been reported. These multi-temperature-responsive block copolymers can set the stage for development in various research fields, such as drug-delivery carriers, sensors in solvents, model proteins, and memory storage. This review focuses on current multi-temperature-responsive polymeric materials and their applications and is divided into three parts: (1) dual-temperature-responsive block copolymers, (2) dual-temperature-responsive hydrogels, and (3) multi-temperature-responsive block copolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–13.

    Article  PubMed  CAS  Google Scholar 

  2. Hoffman AS. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013;65:10–6.

    Article  CAS  PubMed  Google Scholar 

  3. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41:2545–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R. Recent advances in dual temperature responsive block copolymers and their potential as biomedical applications. Polymers. 2016;8:380.

    Article  PubMed Central  CAS  Google Scholar 

  5. Ueki T. Stimuli-responsive polymers in ionic liquids. Polym J. 2014;46:646–55.

    Article  CAS  Google Scholar 

  6. Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev. 2019;138:167–92.

    Article  CAS  PubMed  Google Scholar 

  7. Karimi M, Sahandi Zangabad P, Ghasemi A, Amiri M, Bahrami M, Malekzad H, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces. 2016;8:21107–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tanaka T, Okamoto M. Reversible temperature-responsive and lectin-recognizing glycosylated block copolymers synthesized by RAFT polymerization. Polym J. 2018;50:523–31.

    Article  CAS  Google Scholar 

  9. Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun. 2012;3:705.

    Article  PubMed  CAS  Google Scholar 

  10. Uchiyama S, Gota C, Tsuji T, Inada N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem Commun. 2017;53:10976–92.

    Article  CAS  Google Scholar 

  11. Perera MM, Fischesser DM, Molkentin JD, Ayres N. Stiffness of thermoresponsive gelatin-based dynamic hydrogels affects fibroblast activation. Polym Chem. 2019;10:6360–7.

    Article  CAS  Google Scholar 

  12. Chen Y, Wang Z, Harn YW, Pan S, Li Z, Lin S, et al. Resolving optical and catalytic activities in thermoresponsive nanoparticles by permanent ligation with temperature‐sensitive polymers. Angew Chem Int Ed. 2019;58:11910–7.

    Article  CAS  Google Scholar 

  13. Palanisamy A, Sukhishvili SA. Swelling transitions in layer-by-layer assemblies of UCST block copolymer micelles. Macromolecules. 2018;51:3467–76.

    Article  CAS  Google Scholar 

  14. Jana S, Anas M, Maji T, Banerjee S, Mandal TK. Tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST. Polym Chem. 2019;10:526–38.

    Article  CAS  Google Scholar 

  15. Zhang H, Zhang J, Dai W, Zhao Y. Facile synthesis of thermo-, pH-, CO2- and oxidation-responsive poly(amido thioether)s with tunable LCST and UCST behaviors. Polym Chem. 2017;8:5749–60.

    Article  CAS  Google Scholar 

  16. Lutz J-F, Lehn J-M, Meijer EW, Matyjaszewski K. From precision polymers to complex materials and systems. Nat Rev Mater. 2016;1:16024.

    Article  CAS  Google Scholar 

  17. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40:2004–21.

    Article  CAS  Google Scholar 

  18. Binder WH, Sachsenhofer R. ‘Click’ chemistry in polymer and material science: an update. Macromol Rapid Commun. 2008;29:952–81.

    Article  CAS  Google Scholar 

  19. Arotçaréna M, Heise B, Ishaya S, Laschewsky A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J Am Chem Soc. 2002;124:3787–93.

    Article  PubMed  CAS  Google Scholar 

  20. Kotsuchibashi Y, Takiguchi T, Ebara M, Aoyagi T. The effects of the photo-induced proton generation on the assembly formation of dual-temperature and pH responsive block copolymers. Polym Chem. 2017;8:295–302.

    Article  CAS  Google Scholar 

  21. Dai W, Zhu X, Zhang J, Zhao Y. Temperature and solvent isotope dependent hierarchical self-assembly of a heterografted block copolymer. Chem Commun. 2019;55:5709–12.

    Article  CAS  Google Scholar 

  22. Baddam V, Aseyev V, Hietala S, Karjalainen E, Tenhu H. Polycation-PEG block copolymer undergoes stepwise phase separation in aqueous triflate solution. Macromolecules 2018;51:9681–91.

    Article  CAS  Google Scholar 

  23. Vishnevetskaya NS, Hildebrand V, Nizardo NM, Ko C-H, Di Z, Radulescu A, et al. All-in-one “schizophrenic” self-assembly of orthogonally tuned thermoresponsive diblock copolymers. Langmuir. 2019;35:6441–52.

    Article  CAS  PubMed  Google Scholar 

  24. Vishnevetskaya NS, Hildebrand V, Dyakonova MA, Niebuur B-J, Kyriakos K, Raftopoulos KN, et al. Dual orthogonal switching of the “schizophrenic” self-assembly of diblock copolymers. Macromolecules. 2018;51:2604–14.

    Article  CAS  Google Scholar 

  25. Vishnevetskaya NS, Hildebrand V, Niebuur B-J, Grillo I, Filippov SK, Laschewsky A, et al. “Schizophrenic” micelles from doubly thermoresponsive polysulfobetaine-b-poly(N-isopropylmethacrylamide) diblock copolymers. Macromolecules. 2017;50:3985–99.

    Article  CAS  Google Scholar 

  26. Okabe S, Seno K, Kanaoka S, Aoshima S, Shibayama M. Micellization study on block and gradient copolymer aqueous solutions by DLS and SANS. Macromolecules. 2006;39:1592–7.

    Article  CAS  Google Scholar 

  27. Yang H, Ee RJ, Timmer K, Craenmehr EGM, Huang JH, Öner FC, et al. Acta Biomater. 2015;23:214–28.

    Article  CAS  PubMed  Google Scholar 

  28. Ishii S, Kaneko J, Nagasaki Y. Dual stimuli-responsive redox-active injectable gel by polyion complex based flower micelles for biomedical applications. Macromolecules. 2015;48:3088–94.

    Article  CAS  Google Scholar 

  29. Tsao CT, Hsiao MH, Zhang MY, Levengood SL, Zhang M. Chitosan‐PEG hydrogel with sol-gel transition triggerable by multiple external stimuli. Macromol Rapid Commun. 2015;36:332–8.

    Article  CAS  PubMed  Google Scholar 

  30. Sultana F, Manirujjaman, Imran-Ul-Haque, Arafat M, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci. 2013;3:S95–105.

    Google Scholar 

  31. Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, et al. Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir. 2019;35:6231–55.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature. 1995;374:240–2.

    Article  CAS  Google Scholar 

  33. Stoltz MJ, Brazel CS. Dual lower critical solution temperature polymer networks based on block, laminate, and interpenetrating network structures composed of N‐alkylacrylamides and N,N‐dialkylaminoethyl methacrylates. J Appl Polym Sci. 2003;88:2974–81.

    Article  CAS  Google Scholar 

  34. Berndt I, Richtering W. Doubly temperature sensitive core-shell microgels. Macromolecules. 2003;36:8780–5.

    Article  CAS  Google Scholar 

  35. Berndt I, Pedersen JS, Richtering W. Structure of multiresponsive “intelligent” core-shell microgels. J Am Chem Soc. 2005;127:9372–3.

    Article  CAS  PubMed  Google Scholar 

  36. Berndt I, Pedersen JS, Lindner P, Richtering W. Influence of shell thickness and cross-link density on the structure of temperature-sensitive poly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide core-shell microgels investigated by small-angle neutron scattering. Langmuir. 2006;22:459–68.

    Article  CAS  PubMed  Google Scholar 

  37. Ariga K, Kawakami K, Ebara M, Kotsuchibashi Y, Jia Q, Hill JP. Bioinspired nanoarchitectonics as emerging drug delivery systems. New J Chem. 2014;38:5149–63.

    Article  CAS  Google Scholar 

  38. Read ES, Armes SP. Recent advances in shell cross-linked micelles. Chem Commun. 2007;29:3021–35.

    Article  CAS  Google Scholar 

  39. Shen W, Chang Y, Liu G, Wang H, Cao A, An Z. Biocompatible, antifouling, and thermosensitive core-shell nanogels synthesized by RAFT aqueous dispersion polymerization. Macromolecules. 2011;44:2524–30.

    Article  CAS  Google Scholar 

  40. Kotsuchibashi Y, Narain R. Dual-temperature and pH responsive (ethylene glycol)-based nanogels via structural design. Polym Chem. 2014;5:3061–70.

    Article  CAS  Google Scholar 

  41. He J, Yan B, Tremblay L, Zhao Y. Both core- and shell-cross-linked nanogels: photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir. 2011;27:436–44.

    Article  CAS  PubMed  Google Scholar 

  42. Rajan R, Matsumura K. Tunable dual-thermoresponsive core-shell nanogels exhibiting UCST and LCST behavior. Macromol Rapid Commun. 2017;38:1700478.

    Article  CAS  Google Scholar 

  43. Kotsuchibashi Y, Lee CM, Constantinescu I, Takeuchi LE, Vappala S, Kizhakkedathu JN, et al. A nanoparticle-preparation kit using ethylene glycol-based block copolymers with a common temperature-responsive block. Polym Chem. 2017;8:7311–5.

    Article  CAS  Google Scholar 

  44. Kotsuchibashi Y, Ebara M, Yamamoto K, Aoyagi T. Tunable stimuli-responsive self-assembly system that forms and stabilizes nanoparticles by simple mixing and heating/cooling of selected block copolymers. Polym Chem. 2011;2:1362–7.

    Article  CAS  Google Scholar 

  45. Kotsuchibashi Y, Ebara M, Idota N, Narain R, Aoyagi T. A ‘smart’ approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment. Polym Chem. 2012;3:1150–7.

    Article  CAS  Google Scholar 

  46. Kotsuchibashi Y, Ebara M, Hoffman AS, Narain R, Aoyagi T. Temperature-responsive mixed core nanoparticle properties determined by the composition of statistical and block copolymers in the core. Polym Chem. 2015;6:1693–7.

    Article  CAS  Google Scholar 

  47. Li J, He W-D, Han S‐C, Sun X-L, Li L‐Y, Zhang B-Y. Synthesis and micellization of PSt‐PNIPAM‐PDMAEMA hetero‐arm star polymer with double thermo‐responsibility. J Polym Sci Pol Chem. 2009;47:786–96.

    Article  CAS  Google Scholar 

  48. Xu J, Luo S, Shi W, Liu S. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir. 2006;22:989–97.

    Article  CAS  PubMed  Google Scholar 

  49. Luo S, Xu J, Zhu Z, Wu C, Liu S. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J Phys Chem B. 2006;110:9132–9.

    Article  CAS  PubMed  Google Scholar 

  50. Dong Z, Mao J, Wang D, Yang M, Wang W, Bo S, et al. Tunable dual‐thermoresponsive phase behavior of zwitterionic polysulfobetaine copolymers containing poly(N,N‐dimethylaminoethyl methacrylate)‐grafted silica nanoparticles in aqueous solution. Macromol Chem Phys. 2014;215:111–20.

    Article  CAS  Google Scholar 

  51. Liu Z, Lv Y, An Z. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh‐molecular‐weight polymers with oxygen tolerance. Angew Chem Int Ed. 2017;56:13852–6.

    Article  CAS  Google Scholar 

  52. Wang X, Song Z, Tan Z, Zhu L, Xue T, Lv S, et al. Facile synthesis of helical multiblock copolypeptides: minimal side reactions with accelerated polymerization of N-carboxyanhydrides. ACS Macro Lett. 2019;8:1517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lutz J-F, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science. 2013;341:1238149.

    Article  PubMed  CAS  Google Scholar 

  54. Sugihara S, Kanaoka S, Aoshima S. Stimuli‐responsive ABC triblock copolymers by sequential living cationic copolymerization: multistage self‐assemblies through micellization to open association. J Polym Sci Pol Chem. 2004;42:2601–11.

    Article  CAS  Google Scholar 

  55. Weiss J, Laschewsky A. Temperature-induced self-assembly of triple-responsive triblock copolymers in aqueous solutions. Langmuir. 2011;27:4465–73.

    Article  CAS  PubMed  Google Scholar 

  56. Cao Y, Zhao N, Wu K, Zhu XX. Solution properties of a thermosensitive triblock copolymer of N-alkyl substituted acrylamides. Langmuir. 2009;25:1699–704.

    Article  CAS  PubMed  Google Scholar 

  57. Cao Y, Zhu XX, Luo J, Liu H. Effects of substitution groups on the RAFT polymerization of N-alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules. 2007;40:6481–8.

    Article  CAS  Google Scholar 

  58. Kudo Y, Mori H, Kotsuchibashi Y. Preparation of an ethylene glycol-based block copolymer consisting of six different temperature-responsive blocks. Polym J. 2018;50:1013–20.

    Article  CAS  Google Scholar 

  59. Seno K, Tsujimoto I, Kikuchi T, Kanaoka S, Aoshima S. Thermosensitive gradient copolymers by living cationic polymerization: semibatch precision synthesis and stepwise dehydration‐induced micellization and physical gelation. J Polym Sci Polym Chem. 2008;46:6151–64.

    Article  CAS  Google Scholar 

  60. Organick L, Ang SD, Chen Y-J, Lopez R, Yekhanin S, Makarychev K, et al. Random access in large-scale DNA data storage. Nat Biotechnol. 2018;36:242–8.

    Article  CAS  PubMed  Google Scholar 

  61. Al Ouahabi A, Amalian J-A, Charles L, Lutz J-F. Mass spectrometry sequencing of long digital polymers facilitated by programmed inter-byte fragmentation. Nat Commun. 2017;8:967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lutz J-F, Akdemir Ö, Hoth A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc. 2006;128:13046–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Kotsuchibashi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsuchibashi, Y. Recent advances in multi-temperature-responsive polymeric materials. Polym J 52, 681–689 (2020). https://doi.org/10.1038/s41428-020-0330-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0330-0

This article is cited by

Search

Quick links