Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Precise control of coordination polymerization via the modification of methylaluminoxane (MAO)

Abstract

Methylaluminoxane (MAO) is known as a versatile activator of transition metal catalysts for coordination polymerization reactions, even though its precise structure and the origin of its activation properties have not been fully investigated. Considering that MAO exists as a counter anion that can interact with cationic metal species in a polymerization medium, the ability to impart structural modifications to MAO would provide a new direction for controlling the polymerization behavior. Here, the modification, the composition control, and a new preparation method of MAO will be summarized, as well as the application of modified MAO for the synthesis of stereoblock polydienes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Resconi L, Cavallo L, Fait A, Piemontesi F. Selectivity in propene polymerization with metallocene catalysts. Chem Rev. 2000;100:1253–346.

    Article  CAS  PubMed  Google Scholar 

  2. Möhring PC, Coville NJ. Group 4 metallocene polymerisation catalysts: quantification of ring substituent steric effects. Coord Chem Rev. 2006;250:18–35.

    Article  CAS  Google Scholar 

  3. Nakamura A, Ito S, Nozaki K. Coordination-Insertion copolymerization of fundamental polar monomers. Chem Rev. 2009;109:5215–44.

    Article  CAS  PubMed  Google Scholar 

  4. Chen EY-X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem Rev. 2009;109:5157–214.

    Article  CAS  PubMed  Google Scholar 

  5. Franssen NMG, Reeka JNH, de Bruin B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem Soc Rev. 2013;42:5809–32.

    Article  CAS  PubMed  Google Scholar 

  6. Dong J-Y, Hu Y. Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry. Coord Chem Rev. 2006;250:47–65.

    Article  CAS  Google Scholar 

  7. Domskia GJ, Rose JM, Coates GW, Bolig AD, Brookhart M. Living alkene polymerization: new methods for the precision synthesis of polyolefins. Prog Polym. 2007;32:30–92.

    Article  CAS  Google Scholar 

  8. Valente A, Mortreux A, Visseaux M, Zinck P. Coordinative chain transfer polymerization. Chem Rev. 2013;113:3836–57.

    Article  CAS  PubMed  Google Scholar 

  9. Chen EY-X, Marks TJ. Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure−activity relationships. Chem Rev. 2000;100:1391–434.

    Article  CAS  PubMed  Google Scholar 

  10. Bochmann M. The chemistry of catalyst activation: the case of Group 4 polymerization catalysts. Organometallics. 2010;29:4711–40.

    Article  CAS  Google Scholar 

  11. Bryliakov KP, Talsi EP. Frontiers of mechanistic studies of coordination polymerization and oligomerization of α-olefins. Coord Chem Rev. 2012;256:2994–3007.

    Article  CAS  Google Scholar 

  12. Chen M-C, Roberts JAS, Marks TJ. Marked counteranion effects on single-site olefin polymerization processes. correlations of ion pair structure and dynamics with polymerization activity, chain transfer, and syndioselectivity. J Am Chem Soc. 2004;126:4605–25.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts JAS, Chen M-C, Seyam AM, Li L, Zuccaccia C, Stahl NG, et al. Diverse stereocontrol effects induced by weakly coordinating anions. Stereospecific olefin polymerization pathways at archetypal C s- and C 1-symmetric metallocenium catalysts using mono- and polynuclear halo-perfluoroarylmetalates as cocatalysts. J Am Chem Soc. 2007;129:12713–33.

    Article  CAS  PubMed  Google Scholar 

  14. Zurek E, Ziegler T. Theoretical studies of the structure and function of MAO (methylaluminoxane). Prog Polym Sci. 2004;29:107–48.

    Article  CAS  Google Scholar 

  15. Kaminsky W. Discovery of methylaluminoxane as cocatalyst for olefin polymerization. Macromolecules. 2012;45:3289–97.

    Article  CAS  Google Scholar 

  16. Kaminsky W. Methylaluminoxane: key component for new polymerization catalysts. Adv Polym Sci. 2013;258:1–28.

    Article  CAS  Google Scholar 

  17. Zijlstra HS, Harder S. Methylalumoxane—history, production, properties, and applications. Eur J Inorg Chem. 2015;2015:19–43.

    Article  CAS  Google Scholar 

  18. Tanaka R, Hirose T, Nakayama Y, Shiono T. The preparation of boron-containing aluminoxanes and their application as cocatalysts in the polymerization of olefins. Polym J. 2016;48:67–71.

    Article  CAS  Google Scholar 

  19. Tanaka R, Yuuya K, Sato H, Eberhardt P, Nakayama Y, Shiono T. Synthesis of stereodiblock polyisoprene consisting of cis-1,4 and trans-1,4 sequences by neodymium catalyst: change of the stereospecificity triggered by aluminum compound. Polym Chem. 2016;7:1239–43.

    Article  CAS  Google Scholar 

  20. Tanaka R, Kawahara T, Shinto Y, Nakayama Y, Shiono T. An alternative method for the preparation of trialkylaluminum-depleted modified-methylaluminoxane (dMMAO). Macromolecules. 2017;50:5989–93.

    Article  CAS  Google Scholar 

  21. Tanaka R, Shinto Y, Nakayama Y, Shiono T. Synthesis of stereodiblock polybutadiene using Cp*Nd(BH4)2(thf)2 as a catalyst. Catalysts. 2017;7:284.

    Article  CAS  Google Scholar 

  22. Tanaka R, Yamashita T, Tonoko N, Nakayama Y, Shiono T. Effect of added phenols and silanol on the cocatalyst activity of methylaluminoxane. Kobunshi Ronbunshu. 2018;75:551–6.

    Article  CAS  Google Scholar 

  23. Okajima Y, Nakayama Y, Shiono T, Tanaka R. Preparation of methylaluminoxane from carbon dioxide. Eur J Inorg Chem. 2019;2019:2392–5.

    Article  CAS  Google Scholar 

  24. Crappo CC, Malpass DB. Synthesis of methylaluminoxanes. Eur. Pat. EP0372617. 1990.

  25. Kissin YV, Brandolini AJ. An alternative route to methylalumoxane: synthesis, structure, and the use of model methylalumoxanes as cocatalysts for transition metal complexes in polymerization reactions. Macromolecules. 2003;36:18–26.

    Article  CAS  Google Scholar 

  26. Lee CH, Lee SJ, Park JW, Kim KH, Lee BY, Oh JS. Preparation of Al(C6F5)3 and its use for the modification of methylalumoxane. J Mol Catal A. 1998;132:231–239.

    Article  CAS  Google Scholar 

  27. Hasan T, Ioku A, Nishii K, Shiono T, Ikeda T. Syndiospecificliving polymerization of propene with [t-BuNSiMe2Flu]TiMe2 using MAO as cocatalyst. Macromolecules. 2001;34:3142–5.

    Article  CAS  Google Scholar 

  28. Babushkin DE, Semikolenova NV, Panchenko VN, Sobolev AP, Zakharov VA, Talsi EP. Multinuclear NMR investigation of methylaluminoxane. Macromol Chem Phys. 1997;198:3845–54.

    Article  CAS  Google Scholar 

  29. Resconi L, Bossi S, Abis L. Study on the role of methylalumoxane in homogeneous olefin polymerization. Macromolecules. 1990;23:4489–91.

    Article  CAS  Google Scholar 

  30. Ehm C, Cipullo R, Budzelaar PHM, Busico V. Role(s) of TMA in polymerization. Dalton Trans. 2016;45:6847–55.

    Article  CAS  PubMed  Google Scholar 

  31. Busico V, Cipullo R, Cutillo F, Friederichs N, Ronca S, Wang B. Improving the performance of methylalumoxane: a facile and efficient method to trap “free” trimethylaluminum. J Am Chem Soc. 2003;125:12402–3.

    Article  CAS  PubMed  Google Scholar 

  32. Romano D, Andablo-Reyes EA, Ronca S, Rastogi S. Effect of a cocatalyst modifier in the synthesis of ultrahigh molecular weight polyethylene having reduced number of entanglements. J Polym Sci Part A. 2013;51:1630–5.

    Article  CAS  Google Scholar 

  33. Tanaka R, Kamei I, Cai Z, Nakayama Y, Shiono T. Ethylene-propylene copolymerization behavior of ansa-dimethylsilylene(fluorenyl)(amido)dimethyltitanium complex: application to ethylene-propylene-diene or ethylene-propylene-norbornene terpolymers. J Polym Sci Part A. 2015;53:685–91.

    Article  CAS  Google Scholar 

  34. Rocchigiani L, Busico V, Pastore A, Macchioni A. Probing the interactions between all components of the catalytic pool for homogeneous olefin polymerisation by diffusion NMR spectroscopy. Dalton Trans. 2013;42:9104.

    Article  CAS  PubMed  Google Scholar 

  35. Zaccaria F, Zuccaccia C, Cipullo R, Budzelaar PHM, Macchioni A, Busico V, et al. On the nature of the lewis acidic sites in “TMA-Free” phenol-modified methylaluminoxane. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201901035.

  36. Hagimoto H, Shiono T, Ikeda T. Supporting effects of methylaluminoxane on the living polymerization of propylene with a chelating (diamide)dimethyltitanium complex. Macromol Chem Phys. 2004;205:19–26.

    Article  CAS  Google Scholar 

  37. dos Santos JHZ, Krug C, da Rosa MB, Stedile FC, Dupont J, de Camargo, et al. The effect of silica dehydroxylation temperature on the activity of SiO2-supported zirconocene catalysts. J Mol Catal A. 1999;139:199–207.

    Article  Google Scholar 

  38. Scollard JD, McConville DH, Payne NC, Vittal JJ. Polymerization of α-olefins by chelating diamide complexes of titanium. Macromolecules. 1996;29:5241–3.

    Article  CAS  Google Scholar 

  39. Hagimoto H, Shiono T, Ikeda T. Living polymerization of propene with a chelating diamide complex of titanium using dried methylaluminoxane. Macromol Rapid Commun. 2002;23:72–78.

    Article  Google Scholar 

  40. Maiwald S, Weissenborn H, Sommer C, Taube R. Komplexkatalyse: LIX. Die Katalyse der 1,4-trans-polymerisation des butadiens mit tris(allyl)neodym(III) Nd(η 3-C3H5)3 als Einkomponentenkatalysator—Kinetik und Reaktionsmechanismus. J Organomet Chem. 2001;640:1–9.

    Article  CAS  Google Scholar 

  41. Bonnet F, Visseaux M, Pereira A, Barbier-Baudry D. Highly trans-stereospecific isoprene polymerization by neodymium borohydrido catalysts. Macromolecules. 2005;38:3162–9.

    Article  CAS  Google Scholar 

  42. Maiwald S, Taube R, Hemling H, Schumann HLII. Synthese und Charakterisierung von bis- und mono-(η 3-allyl)neodym(III)-chlorid, Nd(η 3-C3H5)2Cl·1.5 THF und Nd(η 3-C3H5)Cl2·2THF, zur Gewinnung hoch aktiver und selektiver Komplexkatalysatoren für die 1,4-cis-Polymerisation des Butadiens. J Organomet Chem. 1998;522:195–204.

    Article  Google Scholar 

  43. Visseaux M, Mainil M, Terrier M, Mortreux A, Roussel P, Mathivet T, et al. Cationic borohydrido–neodymium complex: Synthesis, characterization and its application as an efficient pre-catalyst for isoprene polymerization. Dalton Trans. 2008;37:4558–61.

    Article  CAS  Google Scholar 

  44. Tanaka R, Shinto Y, Matsuzaki R, Nakayama Y, Shiono T. Stereospecific polymerization of conjugated dienes using neodymium alkylborohydride complexes. Dalton Trans. 2019;48:7267–73.

    Article  CAS  PubMed  Google Scholar 

  45. Dalet T, Cramail H, Deffieux A. Non-hydrolytic route to aluminoxane—type derivative for metallocene activation towards olefin polymerisation. Macromol Chem Phys. 2004;205:1394–401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Grant-in-Aid for Young Scientists (B) (No. 26810070) and the Grant-in-Aid for Young Scientists (18K14276) from the Japan Society for the Promotion of Science (JSPS), Japan. The generous donation of MMAO and MAO from Tosoh-Finechem Co. (Japan) is greatly appreciated. The authors wish to thank Prof. Takeshi Shiono for the kind support as well as Takaaki Hirose, Kaede Yuuya, Yuto Shinto, Naoki Tonoko, Ryusei Matsuzaki, and Yuuya Okajima for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, R. Precise control of coordination polymerization via the modification of methylaluminoxane (MAO). Polym J 52, 661–670 (2020). https://doi.org/10.1038/s41428-020-0325-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0325-x

This article is cited by

Search

Quick links