Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Modulation of the solid-state luminescent properties of conjugated polymers by changing the connecting points of flexible boron element blocks

Abstract

Flexible molecules are unfavorable for designing luminescent dyes because their excitation states rapidly decay through molecular motions. We recently found that some flexible boron complexes, which potentially show a larger degree of structural relaxation in the excited state, and their polymers exhibit unique optical properties with high environmental sensitivity, such as aggregation-induced emission and luminochromism triggered by external stimuli, upon the addition of structural restrictions. Moreover, these optical properties were drastically changed by modulating the connecting points in the polymers. In this review, recent progress in the development of luminescent polymer films with stimuli responsiveness is illustrated. In particular, the influence of the alteration of connecting points on luminescent behaviors is explained. Polymerization is a versatile strategy not only for transforming a class of nonemissive molecules into luminescent dyes but also for precisely regulating the optical properties of film materials; the resulting materials are promising for application as scaffolds for advanced chemical sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  2. Gon M, Sato K, Tanaka K, Chujo Y. Controllable intramolecular interaction of 3D arranged π-conjugated luminophores based on a POSS scaffold, leading to highly thermostable and emissive materials. RSC Adv. 2016;6:78652–60.

    Article  CAS  Google Scholar 

  3. Tanaka K, Chujo Y. Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. NPG Asia Mater. 2015;7:e223.

    Article  CAS  Google Scholar 

  4. Buyuktemiz M, Duman S, Dede Y. Luminescence of BODIPY and dipyrrin: an MCSCF comparison of excited states. J Phys Chem A. 2013;117:1665–9.

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka K, Chujo Y. Advanced luminescent materials based on organoboron polymers. Macromol Rapid Commun. 2012;33:1235–55.

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka K, Yamane H, Yoshii R, Chujo Y. Efficient light absorbers based on thiophene-fused boron dipyrromethene (BODIPY) dyes. Bioorg Med Chem. 2013;21:2715–9.

    Article  CAS  PubMed  Google Scholar 

  7. Yamane H, Ohtani S, Tanaka K, Chujo Y. Synthesis of furan-substituted aza-BODIPYs having strong near-infrared emission. Tetrahedron Lett. 2017;58:2989–92.

    Article  CAS  Google Scholar 

  8. Yoshii R, Yamane H, Tanaka K, Chujo Y. Synthetic strategy for low-band gap oligomers and homopolymers using characteristics of thiophene-fused boron dipyrromethene. Macromolecules. 2014;47:3755–60.

    Article  CAS  Google Scholar 

  9. Yeo H, Tanaka K, Chujo Y. Effective light-harvesting antennae based on BODIPY-tethered cardo polyfluorenes via rapid energy transferring and low concentration quenching. Macromolecules. 2013;46:2599–605.

    Article  CAS  Google Scholar 

  10. Yeo H, Tanaka K, Chujo Y. Tunable optical property between pure red luminescence and dual-emission depended on the length of light-harvesting antennae in the dyads containing the cardo structure of BODIPY and oligofluorene. Macromolecules. 2016;49:8899–904.

    Article  CAS  Google Scholar 

  11. Yamane H, Tanaka K, Chujo Y. Pure-color and dual-color emission from BODIPY homopolymers containing the cardo boron structure. Polym Chem. 2018;9:3917–21.

    Article  CAS  Google Scholar 

  12. Gon M, Tanaka K, Chujo Y. Creative synthesis of organic–inorganic molecular hybrid materials. Bull Chem Soc Jpn. 2017;90:463–74.

    Article  CAS  Google Scholar 

  13. Kajiwara Y, Nagai A, Tanaka K, Chujo Y. Efficient simultaneous emission from RGB-emitting organoboron dyes incorporated into organic-inorganic hybrids and preparation of white light-emitting. Mater J Mater Chem C. 2013;1:4437–44.

    Article  CAS  Google Scholar 

  14. Yoshii R, Nagai A, Tanaka K, Chujo Y. Highly NIR emissive boron di(iso)indomethene (BODIN)-based polymer: drastic change from deep-red to NIR emission via quantitative polymer reaction. J Polym Sci Part A. 2013;51:1726–33.

    Article  CAS  Google Scholar 

  15. Yamane H, Tanaka K, Chujo Y. Synthesis of a near-infrared light-absorbing polymer based on thiophene-substituted aza-BODIPY. Polym J 2018;50:271–5.

    Article  CAS  Google Scholar 

  16. Tanaka K, Yanagida T, Yamane H, Hirose A, Yoshii R, Chujo Y. Liquid scintillators with near infrared emission based on organoboron conjugated polymers. Bioorg Med Chem Lett 2015;25:5331–4.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshii R, Yamane H, Nagai A, Tanaka K, Taka H, Kita H, et al. π-Conjugated polymers composed of BODIPY or aza-BODIPY derivatives exhibiting high electron mobility and low threshold voltage in electron-only devices. Macromolecules. 2014;47:2316–23.

    Article  CAS  Google Scholar 

  18. Gon M, Kato K, Tanaka K, Chujo Y. Elastic and mechanofluorochromic hybrid films with POSS-capped polyurethane and polyfluorene. Mater Chem Front. 2019;3:1174–1180.

    Article  CAS  Google Scholar 

  19. Kato K, Gon M, Tanaka K, Chujo Y. Stretchable conductive hybrid films consisting of cubic silsesquioxane-capped polyurethane and poly(3-hexylthiophene). Polymers. 2019;11:1195.

    Article  PubMed Central  CAS  Google Scholar 

  20. Nakamura R, Narikiyo H, Gon M, Tanaka K, Chujo Y. An optical sensor for discriminating the chemical compositions and sizes of plastic particles in water based on water-soluble networks consisting of polyhedral oligomeric silsesquioxane presenting dual-color luminescence. Mater Chem Front. 2019;3:2690–5.

    Article  CAS  Google Scholar 

  21. Gon M, Tanaka K, Chujo Y. Concept of excitation-driven boron complexes and their applications for functional luminescent materials. Bull Chem Soc Jpn. 2019;92:7–18.

    Article  CAS  Google Scholar 

  22. Gon M, Wakabayashi J, Tanaka K, Chujo Y. Unique substitution effect at 5,5’-positions of fused azobenzene–boron complexes with a N=N π‐conjugated system. Chem Asian J. 2019;14:1837–43.

    Article  CAS  PubMed  Google Scholar 

  23. Ohtani S, Gon M, Tanaka K, Chujo Y. Construction of the luminescent donor–acceptor conjugated systems based on boron-fused azomethine acceptor. Macromolecules. 2019;52:3387–93.

    Article  CAS  Google Scholar 

  24. Gon M, Tanaka K, Chujo Y. A highly efficient near-infrared-emissive copolymer with a N=N double-bond π-conjugated system based on a fused azobenzene-boron complex. Angew Chem Int Ed. 2018;57:6546–51.

    Article  CAS  Google Scholar 

  25. Matsumoto T, Takamine H, Tanaka K, Chujo Y. Design of bond-cleavage-induced intramolecular charge transfer emission with dibenzoboroles and their application to ratiometric sensors for discriminating chain lengths of alkanes. Mater Chem Front. 2017;1:2368–75.

    Article  CAS  Google Scholar 

  26. Ohtani S, Gon M, Tanaka K, Chujo Y. Flexible fused azomethine–boron complex: thermally-induced switching of crystalline-state luminescent property and thermosalient behaviors based on phase transition between polymorphs. Chem Eur J. 2017;23:11827–33.

    Article  CAS  PubMed  Google Scholar 

  27. Hirose A, Tanaka K, Tamashima K, Chujo Y. Synthesis for dual-emissive organometallic complexes containing heterogeneous metal elements. Tetrahedron Lett. 2014;55:6477–81.

    Article  CAS  Google Scholar 

  28. Zhang G, Palmer GM, Dewhirst MW, Fraser CL. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater. 2009;8:747–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang F, DeRosa CA, Daly ML, Song D, Sabat M, Fraser CL. Multi-stimuli responsive luminescent azepane-substituted β-diketones and difluoroboron complexes. Mater Chem Front. 2017;1:1866–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morris WA, Butler T, Kolpaczynska M, Fraser CL. Stimuli responsive furan and thiophene substituted difluoroboron β-diketonate materials. Mater Chem Front. 2017;1:158–66.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang G, Lu J, Sabat M, Fraser CL. Polymorphism and reversible mechanochromic luminescence for solid-state difluoroboron avobenzone. J Am Chem Soc. 2010;132:2160–2.

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Wang K, Zou B, Ye K, Zhang H, Wang Y. Luminescent chromism of boron diketonate crystals: distinct responses to different stresses. Adv Mater. 2015;27:2918–22.

    Article  CAS  PubMed  Google Scholar 

  33. Galer P, Korošec RC, Vidmar M, Šket B. Crystal structures and emission properties of the BF2 complex 1-phenyl-3-(3,5-dimethoxyphenyl)-propane-1,3-dione: multiple chromisms, aggregation- or crystallization-induced emission, and the self-assembly effect. J Am Chem Soc. 2014;136:7383–94.

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka K, Tamashima K, Nagai A, Okawa T, Chujo Y. Facile modulation of optical properties of diketonate-containing polymers by regulating complexation ratios with boron. Macromolecules. 2013;46:2969–75.

    Article  CAS  Google Scholar 

  35. Yoshii R, Tanaka K, Chujo Y. Conjugated polymers based on tautomeric units: regulation of main-chain conjugation and expression of aggregation induced emission property via boron-complexation. Macromolecules. 2014;47:2268–78.

    Article  CAS  Google Scholar 

  36. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001:1740–1.

  37. Tong H, Hong Y, Dong Y, Häußler M, Lam JWY, Li Z, et al. Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem Commun. 2006:3705‒7.

  38. Hu YB, Lam JWY, Tang BZ. Recent progress in AIE-active polymers. Chin J Polym Sci. 2019;37:289–301.

    Article  CAS  Google Scholar 

  39. Qiu Z, Liu X, Lam JWY, Tang BZ. The marriage of aggregation-induced emission with polymer science. Macromol Rapid Commun. 2019;40:1800568.

    Article  CAS  Google Scholar 

  40. Qin A, Lam JWY, Tang BZ. Luminogenic polymers with aggregation-induced emission characteristics. Prog Polym Sci. 2012;37:182–209.

    Article  CAS  Google Scholar 

  41. Hu R, Kang Y, Tang BZ. Recent advances in AIE polymers. Polym J. 2016;48:359–70.

    Article  CAS  Google Scholar 

  42. Tang BZ. Luminogenic polymers. Macromol Chem Phys. 2009;210:900–2.

    Article  CAS  Google Scholar 

  43. Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ. Aggregation-induced emission: Together We Shine, United We Soar! Chem Rev. 2015;115:11718–940.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshii R, Nagai A, Tanaka K, Chujo Y. Highly emissive boron ketoiminate derivatives as new class of aggregation-induced emission fluorophores. Chem Eur J. 2013;19:4506–12.

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka K, Nishino K, Ito S, Yamane H, Suenaga K, Hashimoto K, et al. Development of solid-state emissive o-carborane and theoretical investigation of the mechanism of the aggregation-induced emission behaviors of organoboron “element-blocks”. Faraday Discuss. 2017;196:31–42.

    Article  CAS  PubMed  Google Scholar 

  46. Yoshii R, Nagai A, Tanaka K, Chujo Y. Boron ketoiminate-based polymers: fine-tuning of the emission color and expression of strong emission both in the solution and film state. Macromol Rapid Commun. 2014;35:1315–9.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao C-H, Wakamiya A, Yamaguchi S. Highly emissive poly(aryleneethynylene)s containing 2,5-diboryl-1,4-phenylene as a building unit. Macromolecules. 2007;40:3898–3900.

    Article  CAS  Google Scholar 

  48. Zhao C-H, Sakuda E, Wakamiya A, Yamaguchi S. Highly emissive diborylphemlene-containing bis(phenylethynyl)benzenes: Structure-photophysical property correlations and fluoride ion sensing. Chem Eur J. 2009;15:10603–12.

    Article  CAS  PubMed  Google Scholar 

  49. Yin X, Guo F, Lalancette RA, Jäkle F. Luminescent main-chain organoborane polymers: highly robust, electron-deficient poly(oligothiophene borane)s via stille coupling polymerization. Macromolecules. 2016;49:537–46.

    Article  CAS  Google Scholar 

  50. Meng B, Ren Y, Liu J, Jäkle F, Wang L. p-π conjugated polymers based on stable triarylborane with n-type behavior in optoelectronic devices. Angew Chem Int Ed. 2018;57:2183–7.

    Article  CAS  Google Scholar 

  51. Yamane H, Tanaka K, Chujo Y. Simple and valid strategy for the enhancement of the solid-emissive property based on boron dipyrromethene. Tetrahedron Lett. 2015;56:6786–90.

    Article  CAS  Google Scholar 

  52. Yamane H, Ito S, Tanaka K, Chujo Y. Preservation of main-chain conjugation through BODIPY-containing alternating polymers from electronic interactions with side-chain substituents by cardo boron structures. Polym Chem. 2016;7:2799–807.

    Article  CAS  Google Scholar 

  53. Yeo H, Tanaka K, Chujo Y. Synthesis and energy transfer through heterogeneous dyes-substituted fluorene-containing alternating copolymers and their dual-emission properties. J Polym Sci A. 2015;53:2026–35.

    Article  CAS  Google Scholar 

  54. Yeo H, Tanaka K, Chujo Y. Synthesis of dual-emissive polymers based on ineffective energy transfer through cardo fluorene-containing conjugated polymers. Polymer. 2015;60:228–33.

    Article  CAS  Google Scholar 

  55. Nishino K, Yamamoto H, Tanaka K, Chujo Y. Development of solid-state emissive materials based on multi-functional o-carborane-pyrene dyads. Org Lett. 2016;18:4064–7.

    Article  CAS  PubMed  Google Scholar 

  56. Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Luminescence color tuning of stable luminescent solid materials from blue to NIR based on bis-o-carborane-substituted oligoacenes. Chem Asian J. 2017;12:2134–8.

    Article  CAS  PubMed  Google Scholar 

  57. Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Highly-efficient solid-state emissions of the anthracene–o-carborane dyads with various substituents and their thermochromic luminescent properties. J Mater Chem C. 2017;4:10047–54.

    Article  Google Scholar 

  58. Mori H, Nishino K, Wada K, Morisaki Y, Tanaka K, Chujo Y. Modulation of luminescent chromic behaviors and environment-responsive intensity changes by substituents in bis-o-carborane-substituted conjugated molecules. Mater Chem Front. 2018;2:573–9.

    Article  CAS  Google Scholar 

  59. Suenaga K, Yoshii R, Tanaka K, Chujo Y. Sponge-type emissive chemosensors for the protein detection based on boron ketoiminate-modifying hydrogels with aggregation-induced blueshift emission property. Macromol Chem Phys. 2016;217:414–7.

    Article  CAS  Google Scholar 

  60. Yoshii R, Suenaga K, Tanaka K, Chujo Y. Mechanofluorochromic materials based on aggregation-induced emission-active boron ketoiminates: regulation of the direction of the emission color changes. Chem Eur J. 2015;21:7231–7.

    Article  CAS  PubMed  Google Scholar 

  61. Yamaguchi M, Ito S, Hirose A, Tanaka K, Chujo Y. Modulation of sensitivity to mechanical stimulus in mechanofluorochromic properties by altering substituent positions in solid-state emissive diiodo boron diiminates. J Mater Chem C. 2016;3:5314–9.

    Article  Google Scholar 

  62. Suenaga K, Tanaka K, Chujo Y. Heat-resistant mechanoluminescent chromism of the hybrid molecule based on boron ketoiminate-modified octa-substituted polyhedral oligomeric silsesquioxane. Chem Eur J. 2017;23:1409–14.

    Article  CAS  PubMed  Google Scholar 

  63. Suenaga K, Tanaka K, Chujo Y. Design and luminescent chromism of fused boron complexes having constant emission efficiencies in solution and in the amorphous and crystalline states. Eur J Org Chem. 2017;2017:5191–6.

    Article  CAS  Google Scholar 

  64. Suenaga K, Uemura K, Tanaka K, Chujo Y. Stimuli-responsive luminochromic polymers consisting of multi-states emissive fused boron ketoiminate. Polym Chem. https://doi.org/10.1039/C9PY01733J.

    Article  CAS  Google Scholar 

  65. Yoshii R, Hirose A, Tanaka K, Chujo Y. Boron diiminate with aggregation-induced emission and crystallization-induced emission enhancement characteristics. Chem Eur J. 2014;20:8320–4.

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka K, Yanagida T, Hirose A, Yamane H, Yoshii R, Chujo Y. Synthesis and color tuning of boron diiminate conjugated polymers with aggregation-induced scintillation properties. RSC Adv. 2015;5:96653–9.

    Article  CAS  Google Scholar 

  67. Yoshii R, Hirose A, Tanaka K, Chujo Y. Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers. J Am Chem Soc. 2014;136:18131–9.

    Article  CAS  PubMed  Google Scholar 

  68. Hirose A, Tanaka K, Yoshii R, Chujo Y. Film-type chemosensors based on boron diminate polymers having oxidation-induced emission properties. Polym Chem. 2015;6:5590–5.

    Article  CAS  Google Scholar 

  69. Ito S, Tanaka K, Chujo Y. Characterization and photophysical properties of a luminescent aluminum hydride complex supported by a β-diketiminate ligand. Inorganics. 2019;7:100.

    Article  CAS  Google Scholar 

  70. Ito S, Hirose A, Yamaguchi M, Tanaka K, Chujo Y. Size-discrimination for volatile organic compounds utilizing gallium diiminate by luminescent chromism of crystallization-induced emission via encapsulation-triggered crystal-crystal transition. J Mater Chem C. 2016;3:5564–71.

    Article  Google Scholar 

  71. Ito S, Hirose A, Yamaguchi M, Tanaka K, Chujo Y. Synthesis of aggregation-induced emission-active conjugated polymers composed of group 13 diiminate complexes with tunable energy levels via alteration of central element. Polymers. 2017;9:68–78.

    Article  PubMed Central  CAS  Google Scholar 

  72. Yamaguchi M, Ito S, Hirose A, Tanaka K, Chujo Y. Luminescent color tuning with polymer films composed of boron diiminate conjugated copolymers by changing connection points to comonomers. Polym Chem. 2018;9:1942–6.

    Article  CAS  Google Scholar 

  73. Yamaguchi M, Ito S, Hirose A, Tanaka K, Chujo Y. Control of aggregation-induced emission versus fluorescence aggregation-caused quenching by bond existence at a single site in boron pyridinoiminate complexes. Mater Chem Front. 2017;1:1573–9.

    Article  CAS  Google Scholar 

  74. Yamaguchi M, Tanaka K, Chujo Y. Design of conjugated molecules presenting short-wavelength luminescence by utilizing heavier atoms of the same element group. Chem Asian J. 2018;13:1342–7.

    Article  CAS  PubMed  Google Scholar 

  75. Yamaguchi M, Tanaka K, Chujo Y. Control of solution and solid-state emission with conjugated polymers based on the boron pyridinoiminate structure by ring fusion. Polymer. 2018;142:127–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Chujo, Y. Modulation of the solid-state luminescent properties of conjugated polymers by changing the connecting points of flexible boron element blocks. Polym J 52, 555–566 (2020). https://doi.org/10.1038/s41428-020-0316-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0316-y

This article is cited by

Search

Quick links