Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhancement of the mechanical properties of polysaccharide composite films utilizing cellulose nanofibers

Subjects

Abstract

We have demonstrated that free-standing films with thicknesses of several tens of micrometers made from chondroitin sulfate C (CS) and chitosan (CHI) are readily obtained by utilizing the hot press technique. To improve the mechanical properties of the polysaccharide composite films, especially in the wet state, we investigated the incorporation of cellulose nanofibers (CNFs) in the films as a nanofiller in the present study. CNFs were homogeneously incorporated into polyion complex (PIC) gels under optimized conditions. The CNF-incorporated films were evaluated morphologically and spectroscopically by optical and electron microscopy and infrared microscopy; the results indicated that there were micrometer-scale domains in the CNF-incorporated films. The mechanical properties of the CNF-incorporated films were also investigated in the dried and wet states. Especially in the wet state, the Young’s moduli were effectively enhanced with an increased weight fraction of CNFs in the films. The mechanism of the filler effects was determined in terms of the dependency of the CNF content on the mechanical properties of the films. The results indicated that the nonionic nanofillers were incorporated with minimum influences on polysaccharide PIC formation, which contributed to the effective enhancement of film strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57:397–430.

    CAS  Google Scholar 

  2. Iijima K, Hashizume M. Application of polysaccharides as structural materials. Trends Glycosci Glycotechnol. 2015;27:67–79.

    Google Scholar 

  3. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;46:3358–93.

    Google Scholar 

  4. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.

    CAS  Google Scholar 

  5. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sugahara K, Mikami T, Uyama T, Mizuguchiz S, Nomuraz K, Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struc Biol. 2003;13:612–20.

    CAS  Google Scholar 

  7. Yui N, Okano T, Sakurai Y. Inflammation responsive degradation of crosslinked hyaluronic acid gels. J Control Release. 1992;22:105–16.

    CAS  Google Scholar 

  8. Sintov A, Di–Capua N, Rubinstein A. Cross-linked chondroitin sulphate: characterization for drug delivery purposes. Biomaterials. 1995;16:473–78.

    CAS  PubMed  Google Scholar 

  9. Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–7.

    CAS  Google Scholar 

  10. Hammond PT. Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater. 2004;16:1271–93.

    CAS  Google Scholar 

  11. Sukhishvili SA. Responsive polymer films and capsules via layer–by–layer assembly. Curr Opin Colloid Interface Sci. 2005;10:37–44.

    CAS  Google Scholar 

  12. Fujie T, Okamura Y, Takeoka S. Ubiquitous transference of a free-standing polysaccharide nanosheet with the development of a nano-adhesive plaster. Adv Mater. 2007;19:3549–53.

    CAS  Google Scholar 

  13. Gribova V, Auzely–Velty R, Picart C. Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem Mater. 2011;24:854–69.

    Google Scholar 

  14. Caridade SG, Monge C, Gilde F, Boudou T, Mano JF, Picart C. Free–standing polyelectrolyte membranes made of chitosan and alginate. Biomacromolecules. 2013;14:1653–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashizume M, Kobayashi H, Ohashi M. Preparation of free–standing films of natural polysaccharides using hot press technique and their surface functionalization with biomimetic apatite. Colloids Surf B. 2011;88:534–8.

    CAS  Google Scholar 

  16. Hashizume M, Ohashi M, Kobayashi H, Tsuji Y, Iijima K. Free–standing polysaccharide composite films: improved preparation and physical properties. Colloids Surf A. 2015;483:18–24.

    CAS  Google Scholar 

  17. Hashizume M, Murata Y, Iijima K, Shibata T. Drug loading and release behaviors of freestanding polysaccharide composite films. Polym J. 2016;48:545–50.

    CAS  Google Scholar 

  18. Iijima K, Kimura T, Sato R, Takahashi T, Hashizume M. Kinetic analysis of molecular permeabilities of free–standing polysaccharide composite films. Macromol Chem Phys. 2017;218:1600391.

    Google Scholar 

  19. Iijima K, Tsuji Y, Kuriki I, Kakimoto A, Nakaido Y, Ninomiya R, et al. Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Colloids Surf B. 2017;160:228–37.

    CAS  Google Scholar 

  20. Iijima K, Suzuki A, Hashizume M. Preparation of swellable and highly operable composite films made of polysaccharide and supporting substrates. Kobunshi Ronbunshu. 2018;75:195–202.

    CAS  Google Scholar 

  21. Huanga ZM, Zhangb YZ, Kotakic M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2002;63:2223–53.

    Google Scholar 

  22. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–204.

    CAS  Google Scholar 

  23. Sanchez C, Julián B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005;15:3559–92.

    CAS  Google Scholar 

  24. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–500.

    CAS  PubMed  Google Scholar 

  25. Isogai A, Saito T, Fukuzumi H. TEMPO–oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.

    CAS  PubMed  Google Scholar 

  26. Mial C, Hamad WY. Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose. 2013;20:2221–62.

    Google Scholar 

  27. Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD. Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci. 2009;113:2238–47.

    CAS  Google Scholar 

  28. Qu P, Gao Y, Wu GF, Zhang LP. Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. BioResources 2010;5:1811–23.

    CAS  Google Scholar 

  29. Hagiwara Y, Putra A, Kakugo A, Furukawa H, Gong JP. Ligament–like tough double-network hydrogel based on bacterial cellulose. Cellulose. 2010;17:93–101.

    CAS  Google Scholar 

  30. Yang J, Zhao JJ, Xu F, Sun RC. Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces. 2013;5:12960–7.

    CAS  PubMed  Google Scholar 

  31. Ansari F, Skrifvars M, Berglund L. Nanostructured biocomposites based on unsaturated polyester resinand a cellulose nanofiber network. Compos Sci Technol. 2015;117:298–306.

    CAS  Google Scholar 

  32. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, et al. High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater. 2004;14:1124–8.

    CAS  Google Scholar 

  33. Srithongkaham S, Vivitchanont L, Krongtaew C. Starch/cellulose biocomposites prepared by high-shear homogenization/compression molding. J Mater Sci Eng B. 2012;2:213–22.

    Google Scholar 

  34. Wu T, Farnood R, O’kelly K, Chen B. Mechanical behavior of transparent nanofibrillar cellulose–chitosan nanocomposite films in dry and wet conditions. J Mech Behav Biomed. 2014;32:279–86.

    CAS  Google Scholar 

  35. Yadav CY, Maji PK. Synergistic effect of cellulose nanofibres and bio- extracts for fabricating high strength sodium alginate based composite bio-sponges with antibacterial properties. Carbohydr Polym. 2019;203:396–408.

    CAS  PubMed  Google Scholar 

  36. Lee JH, Marroquin J, Rhee KY, Park SJ, Hui D. Cryomilling application of graphene to improve material propertiesof graphene/chitosan nanocomposites. Composites. 2013;45:682–7.

    CAS  Google Scholar 

  37. Park MJ. Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate nanocomposites blends. Carbohydr Polym. 2014;110:18–25.

    PubMed  Google Scholar 

  38. Cui K, Sun TL, Kurokawa T, Nakajima T, Nonoyana T, Chen L, et al. Stretching–induced ion complexation in physical polyampholyte hydrogels. Soft Matter. 2016;12:8833–40.

    CAS  PubMed  Google Scholar 

  39. ALR Pires, Motta LA, Moraes ÂM, MEM Braga. Towards wound dressings with improved properties: effects of poly(dimethylsiloxane) on chitosan–alginate films loaded with thymol and beta–carotene. Mat Sci Eng C. 2018;93:595–605.

    Google Scholar 

  40. Chen WB, Wang LF, Chen JS, Fan SY. Characterization of polyelectrolyte complexes between chondroitin sulfate and chitosan in the solid state. J Biomed Mater Res. 2005;75A:128–37.

    CAS  Google Scholar 

  41. Qua EH, Hornsby PR, Sharma HSS, Lyons G. Preparation and characterization of cellulose nanofibers. J Mater Sci. 2011;46:6029–45.

    CAS  Google Scholar 

  42. Liu D, Wu Q, Chang PR, Gao G. Self–assembled liquid crystal film from mechanically defibrillated chitosan nanofibers. Carbohydr Polym. 2011;84:686–9.

    CAS  Google Scholar 

  43. Wang H, Prendiville PL, McDonnellt PJ, Chang WV. An ultrasonic technique for the measurement of the elastic moduli of human ocrnea. J Biomech. 1996;29:1633–6.

    CAS  PubMed  Google Scholar 

  44. Egorova VI. Schastlivtsevb IV, Prutc EV, Baranovc AO, Turusov RA. Mechanical properties of the human gastrointestinal tract. J Biomech. 2002;35:1417–25.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research (C) from MEXT, Japan (16K05799 and 19K05588 to MH). We thank Prof Takeshi Kawai (Tokyo University of Science) for the rheological analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mineo Hashizume.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yataka, Y., Suzuki, A., Iijima, K. et al. Enhancement of the mechanical properties of polysaccharide composite films utilizing cellulose nanofibers. Polym J 52, 645–653 (2020). https://doi.org/10.1038/s41428-020-0311-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0311-3

This article is cited by

Search

Quick links