Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of microtubule immobilization by glutaraldehyde on kinesin-driven cargo transport

Abstract

The glutaraldehyde fixation method for fixing tissues is attractive for its ease of use and straightforward surface chemistry. We investigated the effect of glutaraldehyde-induced microtubule immobilization on kinesin-driven cargo transport along microtubules and found that at low glutaraldehyde concentrations, the microtubule–kinesin interaction remains unperturbed. Such findings may facilitate the application of the glutaraldehyde fixation method for many in vitro studies aiming to build nanodevices powered by the microtubule–motor protein interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silva CJSM, Sousa F, Gübitz, G & Cavaco-Paulo A. Chemical modifications on proteins using glutaraldehyde. Food Technol. Biotechnol. 2004;42:51–6. 

  2. Bullock GR. The current status of fixation for electron microscopy: a review. J Microsc. 1984;133:1–15.

    Article  CAS  Google Scholar 

  3. Betancor L, López-Gallego F, Alonso-Morales N, Dellamora G, Mateo C, Fernandez-Lafuente R, et al. Glutaraldehyde in protein immobilization. In: Guisan, JM editor. Immobilization of enzymes and cells. Humana Press US; 2006. p. 57–64. https://doi.org/10.1007/978-1-59745-053-9_5.

    Chapter  Google Scholar 

  4. Quiocho FA, Richards FM. The enzymic behavior of carboxypeptidase-A in the solid state*. Biochemistry. 1966;5:4062–76. 

    Article  CAS  Google Scholar 

  5. Clancy BE, Behnke-Parks WM, Andreasson JOL, Rosenfeld SS, Block SM. A universal pathway for kinesin stepping. Nat Struct Mol Biol. 2011;18:1020–7.

    Article  CAS  Google Scholar 

  6. Kakugo A, Sugimoto S, Gong JP, Osada Y. Gel machines constructed from chemically cross-linked actins and myosins. Adv Mater. 2002;14:1124–6.

    Article  CAS  Google Scholar 

  7. Kakugo A, Sugimoto S, Shikinaka K, Gong JP, Osada Y. Characteristics of chemically cross-linked myosin gels. J Biomater Sci Polym Ed. 2005;16:203–18.

    Article  CAS  Google Scholar 

  8. Kitamura K, Tokunaga M, Iwane AH, Yanagida T. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature. 1999;397:129–34.

    Article  CAS  Google Scholar 

  9. Hess H, Bachand GD, Vogel V. Powering nanodevices with biomolecular motors. Chemistry. 2004;10:2110–6.

    Article  CAS  Google Scholar 

  10. Kabir AMR, Inoue D, Hamano Y, Mayama H, Sada K, Kakugo A. Biomolecular motor modulates mechanical property of microtubule. Biomacromolecules. 2014;15:1797–805.

    Article  CAS  Google Scholar 

  11. Inoue D, Nitta T, Kabir AMR, Sada K, Gong JP, Konagaya A, et al. Sensing surface mechanical deformation using active probes driven by motor proteins. Nat Commun. 2016;7:12557.

    Article  CAS  Google Scholar 

  12. Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, et al. DNA-assisted swarm control in a biomolecular motor system. Nat Commun. 2018;9:4–11.

    Article  Google Scholar 

  13. Matsuda K, Kabir AMR, Akamatsu N, Saito A, Ishikawa S, Matsuyama T, et al. Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 2019;19:3933–8.

    Article  CAS  Google Scholar 

  14. Sucran Seker, YME in Nanopatterning Nanoscale Devices Biol. Appl. (ed. Seila Šelimović) 261–90 CRC Press, Taylor and Francis Group, 2017.

  15. Nasrin SR, Rashedul Kabir AM, Konagaya A, Ishihara T, Sada K, Kakugo A. Stabilization of microtubules by cevipabulin. Biochem Biophys Res Commun. 2019;516:760-4. https://doi.org/10.1016/j.bbrc.2019.06.095.

    Article  CAS  Google Scholar 

  16. Turner D, Chang C, Fang K, Cuomo P, Murphy D. Kinesin movement on glutaraldehyde-fixed microtubules. Anal Biochem. 1996;242:20–5.

    Article  CAS  Google Scholar 

  17. Castoldi M, Popov AV. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr Purif. 2003;32:83–8.

    Article  CAS  Google Scholar 

  18. Peloquin J, Komarova Y, Borisy G. Conjugation of fluorophores to tubulin. Nat Methods. 2005;2:299–303.

    Article  CAS  Google Scholar 

  19. Fujimoto K, Kitamura M, Yokokawa M, Kanno I, Kotera H, Yokokawa R. Colocalization of quantum dots by reactive molecules carried by motor proteins on polarized microtubule arrays. ACS Nano. 2013;7:447–55.

    Article  CAS  Google Scholar 

  20. Sikora A, Canova FF, Kim K, Nakazawa H, Umetsu M, Kumagai I, et al. Behavior of kinesin driven quantum dots trapped in a microtubule loop. ACS Nano. 2015;9:11003–13.

    Article  CAS  Google Scholar 

  21. Conway L, Wood D, Tuzel E, Ross JL. Motor transport of self-assembled cargos in crowded environments. Proc Natl Acad Sci USA. 2012;109:20814–9.

    Article  CAS  Google Scholar 

  22. Fernandez-Lafuente R, Rosell CM, Rodriguez V, Guisan JM. Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzym Microb Technol. 1995;17:517–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Future AI and Robot Technology Research and Development Project from New Energy and Industrial Technology Development Organization (NEDO), Japan, Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Engine” (JP18H05423) and Grant-in-Aid for Scientific Research (A) (JP18H03673) to AK from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakugo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrin, S.R., Kabir, A.M.R., Sada, K. et al. Effect of microtubule immobilization by glutaraldehyde on kinesin-driven cargo transport. Polym J 52, 655–660 (2020). https://doi.org/10.1038/s41428-020-0309-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0309-x

Search

Quick links