Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dodecyl sulfate-doped polypyrrole derivative grains as a light-responsive liquid marble stabilizer

Subjects

Abstract

Polypyrrole, poly(N-methyl pyrrole) and poly(N-ethyl pyrrole) grains were synthesized by aqueous chemical oxidative polymerization in the presence of sodium dodecyl sulfate as both a dopant and a hydrophobizing agent. The resulting grain products were characterized in terms of their size, morphology, surface and bulk chemical compositions, hydrophilic–hydrophobic balance, (photo)thermal property, and conductivity. Scanning electron microscopy studies indicated that the grains were aggregates of atypical particles with submicrometer size. Elemental microanalysis and thermogravimetric analysis confirmed the production of dodecyl sulfate-doped polypyrrole, poly(N-methyl pyrrole) and poly(N-ethyl pyrrole) materials, and they showed near-infrared light-to-heat photothermal properties, which was confirmed by thermography. The data obtained through X-ray photoelectron spectroscopy indicated the presence of dodecyl sulfate dopants on the surface of the grains. The dried polypyrrole and poly(N-ethyl pyrrole) grains showed hydrophobic character, and therefore, they can adsorb to the air–water interface and act as a light-responsive liquid marble stabilizer. Locomotion of the liquid marble can be driven by near-infrared laser irradiation-induced Marangoni flow on a planar air–water surface. The release of internal liquid can be achieved by controlled disruption of liquid marbles via external stimulus application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aussillous P, Quéré D. Properties of liquid marbles. Proc R Soc A. 2006;462:973–99. https://doi.org/10.1098/rspa.2005.1581

    Article  CAS  Google Scholar 

  2. Bormashenko E. Liquid marbles, elastic nonstick droplets: From minireactors to self-propulsion. Langmuir. 2017;33:663–9. https://doi.org/10.1021/acs.langmuir.6b03231

    Article  CAS  PubMed  Google Scholar 

  3. McHale G, Newton MI. Liquid marbles: Topical context within soft matter and recent progress. Soft Matter. 2015;11:2530–46. https://doi.org/10.1039/C5SM00084J

    Article  CAS  PubMed  Google Scholar 

  4. Fujii S, Yusa S, Nakamura Y. Stimuli-responsive liquid marbles: controlling structure, shape, stability, and motion. Adv Funct Mater. 2016;26:7206–23. https://doi.org/10.1002/adfm.201603223

    Article  CAS  Google Scholar 

  5. Oliveira NM, Reis RL, Mano JF. The potential of liquid marbles for biomedical applications: a critical review. Adv Heal Mater. 2017;6:1700192. https://doi.org/10.1002/adhm.201700192

    Article  CAS  Google Scholar 

  6. Fujii S. Stimulus-responsive soft dispersed systems developed based on functional polymer particles: bubbles and liquid marbles. Polym J. 2019;51:1081–101. https://doi.org/10.1038/s41428-019-0233-0

    Article  CAS  Google Scholar 

  7. Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, et al. Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater. 2010;22:4814–8. https://doi.org/10.1002/adma.201001898

    Article  CAS  PubMed  Google Scholar 

  8. Gao W, Lee HK, Hobley J, Liu T, Phang IY, Ling XY. Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation. Angew Chem Int Ed. 2015;54:3993–6. https://doi.org/10.1002/anie.201412103

    Article  CAS  Google Scholar 

  9. Sheng Y, Sun G, Wu J, Ma G, Ngai T. Silica-based liquid marbles as microreactors for the silver mirror reaction. Angew Chem Int Ed. 2015;54:7012–7. https://doi.org/10.1002/anie.201500010

    Article  CAS  Google Scholar 

  10. Zang D, Li J, Chen Z, Zhai Z, Geng X, Binks BP. Switchable opening and closing of a liquid marble via ultrasonic levitation. Langmuir. 2015;31:11502–7. https://doi.org/10.1021/acs.langmuir.5b02917

    Article  CAS  PubMed  Google Scholar 

  11. Sato E, Yuri M, Fujii S, Nishiyama T, Nakamura Y, Horibe H. Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen. Chem Commun. 2015;51:17241–4. https://doi.org/10.1039/C5CC07421E

    Article  CAS  Google Scholar 

  12. Dupin D, Armes SP, Fujii S. Stimulus-responsive liquid marbles. J Am Chem Soc. 2009;131:5386–7. https://doi.org/10.1021/ja901641v

    Article  CAS  PubMed  Google Scholar 

  13. Yusa S, Morihara M, Nakai K, Fujii S, Nakamura Y, Maruyama A, et al. Thermo-responsive liquid marbles. Polym J. 2014;46:145–8. https://doi.org/10.1038/pj.2013.84

    Article  CAS  Google Scholar 

  14. Bormashenko E, Musin A. Revealing of water surface pollution with liquid marbles. Appl Surf Sci. 2009;255:6429–31. https://doi.org/10.1016/j.apsusc.2009.02.027

    Article  CAS  Google Scholar 

  15. Geyer F, Asaumi Y, Vollmer D, Butt HJ, Nakamura Y, Fujii S. Polyhedral liquid marbles. Adv Funct Mater. 2019;29:1808826. https://doi.org/10.1002/adfm.201808826

    Article  CAS  Google Scholar 

  16. Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T. New investigations on ferrofluidics: Ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir. 2008;24:12119–22. https://doi.org/10.1021/la802355y

    Article  CAS  PubMed  Google Scholar 

  17. Dampeirou C. Hydrophobic silica-based powder containing xylitol or trehalose and water for base of cosmetics. 2005;WO2005034917A2.

  18. Fujii S, Sawada S, Nakayama S, Kappl M, Ueno K, Shitajima K, et al. Pressure-sensitive adhesive powder. Mater Horiz. 2016;3:47–52. https://doi.org/10.1039/C5MH00203F

    Article  CAS  Google Scholar 

  19. Paven M, Mayama H, Sekido T, Butt HJ, Nakamura Y, Fujii S. Light-driven delivery and release of materials using liquid marbles. Adv Funct Mater. 2016;26:3199–206. https://doi.org/10.1002/adfm.201600034

    Article  CAS  Google Scholar 

  20. Kawashima H, Paven M, Mayama H, Butt HJ, Nakamura Y, Fujii S. Transfer of materials from water to solid surfaces using liquid marbles. ACS Appl Mater Interfaces. 2017;9:33351–9. https://doi.org/10.1021/acsami.7b11375

    Article  CAS  PubMed  Google Scholar 

  21. Kawashima H, Mayama H, Nakamura Y, Fujii S. Hydrophobic polypyrroles synthesized by aqueous chemical oxidative polymerization and their use as light-responsive liquid marble stabilizers. Polym Chem. 2017;8:2609–18. https://doi.org/10.1039/C7PY00158D

    Article  CAS  Google Scholar 

  22. Kawashima H, Okatani R, Mayama H, Nakamura Y, Fujii S. Synthesis of hydrophobic polyanilines as a light-responsive liquid marble stabilizer. Polymer. 2018;148:217–27. https://doi.org/10.1016/j.polymer.2018.06.039

    Article  CAS  Google Scholar 

  23. Shimogama N, Uda M, Oyama K, Hanochi H, Hirai T, Nakamura Y, et al. Hydrophobic poly(3,4-ethylenedioxythiophene) particles synthesized by aqueous oxidative coupling polymerization and their use as near-infrared-responsive liquid marble stabilizer. Polym J. 2019;51:761–70. https://doi.org/10.1038/s41428-019-0189-0

    Article  CAS  Google Scholar 

  24. Inoue H, Hirai T, Hanochi H, Oyama K, Mayama H, Nakamura Y, et al. Poly(3-hexylthiophene) grains synthesized by solvent-free oxidative coupling polymerization and their use as light-responsive liquid marble stabilizer. Macromolecules. 2019;52:708–17. https://doi.org/10.1021/acs.macromol.8b02426

    Article  CAS  Google Scholar 

  25. Kavokine N, Anyfantakis M, Morel M, Rudiuk S, Bickel T, Baigl D. Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int. Ed. 2016;55:11183–7. https://doi.org/10.1002/anie.201603639

    Article  CAS  Google Scholar 

  26. Skotheim TA, Reynolds J. Handbook of conducting polymers. 3rd ed. Florida: CRC Press; 2007.

  27. Otero TF. Conducting polymers: Bioinspired intelligent materials and devices. London: RSC; 2016.

    Google Scholar 

  28. Attar HAA, Kabbi ASA, Faris FA. Polypyrrole conductive polymer characteristics as an optical display device. Polym Eng Sci. 1999;39:2482–6. https://doi.org/10.1002/pen.11635

    Article  Google Scholar 

  29. Yuan X, Ding XL, Wang CY, Ma ZF. Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ Sci. 2013;6:1105–24. https://doi.org/10.1039/C3EE23520C

    Article  CAS  Google Scholar 

  30. Deshpande PP, Sazou D. Corrosion protection of metals by intrinsically conducting polymers. New York, USA: CRC Press; 2015.

    Book  Google Scholar 

  31. Mecerreyes D, Alvaro V, Cantero I, Bengoetxea M, Calvo PA, Grande H, et al. Low surface energy conducting polypyrrole doped with a fluorinated counterion. Adv Mater. 2002;14:749–52. https://doi.org/10.1002/1521-4095(20020517)14

    Article  CAS  Google Scholar 

  32. Hara S, Zama T, Takashima W, Kaneto K. Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J. 2004;36:151–61. https://doi.org/10.1295/polymj.36.151

    Article  CAS  Google Scholar 

  33. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32:876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012

    Article  CAS  Google Scholar 

  34. Balint R, Cassidy NJ, S. Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–53. https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  35. Eftekhari A, Kazemzad M, Rad MK. Significant effect of dopant size on nanoscale fractal structure of polypyrrole film. Polym J. 2006;38:781–5. https://doi.org/10.1295/polymj.PJ2005173

    Article  CAS  Google Scholar 

  36. Olsen GW, Butenhoff JL, Zobel LR. Perfluoroalkyl chemicals and human fetal development: An epidemiologic review with clinical and toxicological perspectives. Reprod Toxicol. 2009;27:212–30. https://doi.org/10.1016/j.reprotox.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  37. Sonkar R, Kay MK, Choudhury M. PFOS modulates interactive epigenetic regulation in first-trimester human trophoblast cell line HTR-8/SVneo. Chem Res Toxicol. 2019;32:2016–27. https://doi.org/10.1021/acs.chemrestox.9b00198

    Article  CAS  PubMed  Google Scholar 

  38. Singer MM, Tjeerdema RS. Fate and effects of the surfactant sodium dodecyl sulfate. In: Ware GW, editors. Reviews of environmental contamination and toxicology. Reviews of environmental contamination and toxicology, vol. 133. New York, NY: Springer; 1993.

    Chapter  Google Scholar 

  39. Bondi CAM, Marks JL, Wroblewski LB, Raatikainen HS, Lenox SR, Gebhardt KE. Human and environmental toxicity of sodium lauryl sulfate (SLS): evidence for safe use in household cleaning products. Environ Health Insights. 2015;9:27–32. https://doi.org/10.4137/EHI.S31765

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Chu Y, Yang L. Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Mater Chem Phys. 2006;98:304–8. https://doi.org/10.1016/j.matchemphys.2005.09.025

    Article  CAS  Google Scholar 

  41. Ovando-Medina VM, Peralta RD, Mendizábal E, Martínez-Gutiérrez H, Lara-Ceniceros TE, Ledezma-Rodríguez R. Synthesis of polypyrrole nanoparticles by oil-in-water microemulsion polymerization with narrow size distribution. Colloid Polym Sci. 2011;289:759–65. https://doi.org/10.1007/s00396-011-2394-z

    Article  CAS  Google Scholar 

  42. Beadle PM, Armes SP, Greaves SJ, Watts JF. X-ray photoelectron spectroscopy studies on sterically-stabilized polypyrrole particles. Langmuir. 1996;12:1784–8. https://doi.org/10.1021/la950746o

    Article  CAS  Google Scholar 

  43. Takeoka H, Fukui N, Sakurai S, Nakamura Y, Fujii S. Nanomorphology characterization of sterically stabilized polypyrrole-palladium nanocomposite particles. Polym J. 2014;46:704–9. https://doi.org/10.1038/pj.2014.44

    Article  CAS  Google Scholar 

  44. Fujii S, Hamasaki H, Abe H, Yamanaka S, Ohtaka A, Nakamura E, et al. One-step synthesis of magnetic iron-conducting polymer-palladium ternary nanocomposite microspheres with applications as recyclable catalyst. J Mater Chem A. 2013;1:4427–30. https://doi.org/10.1039/c3ta10389g

    Article  CAS  Google Scholar 

  45. Martínez JML, Denis MFL, Denaday LR, Orto VCD. Development and characterization of a new polyampholyte-surfactant complex applied to the solid phase extraction of bisphenol-A. Talanta. 2009;80:789–96. https://doi.org/10.1016/j.talanta.2009.07.065

    Article  CAS  PubMed  Google Scholar 

  46. Ćirić-Marjanović G, Mentus S, Pašti I, Gavrilov N, Krstić J, Travas-Sejdic J, et al. Synthesis, characterization, and electrochemistry of nanotubular polypyrrole and polypyrrole-derived carbon nanotubes. J Phys Chem C. 2014;118:14770–84. https://doi.org/10.1021/jp502862d

    Article  CAS  Google Scholar 

  47. Omastová M, Trchová M, Kovářová J, Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met. 2003;138:447–55. https://doi.org/10.1016/S0379-6779(02)00498-8

    Article  CAS  Google Scholar 

  48. Ishii K, Sato K, Oaki Y, Imai H. Highly porous polymer dendrites of pyrrole derivatives synthesized through rapid oxidative polymerization. Polym J. 2019;51:11–8. https://doi.org/10.1038/s41428-018-0115-x

    Article  CAS  Google Scholar 

  49. Kostić R, Raković D, Stepanyan SA, Davidova IE, Gribov LA. Vibrational spectroscopy of polypyrrole, theoretical study. J Chem Phys. 1995;102:3104–9. https://doi.org/10.1063/1.468620

    Article  Google Scholar 

  50. Lu Y, Shi G, Li C, Liang Y. Thin polypyrrole films prepared by chemical oxidative polymerization. J Appl Polym Sci. 1998;70:2169–72. https://doi.org/10.1002/(sici)1097-4628(19981212)70

    Article  CAS  Google Scholar 

  51. Su W, Iroh JO. IR and XPS studies on the interphase and poly(N-methylpyrrole) coatings electrodeposited on steel substrates. Electrochim Acta. 1999;44:3321–32. https://doi.org/10.1016/S0013-4686(99)00055-9

    Article  CAS  Google Scholar 

  52. Arjomandi J, Safdar S, Malmir M. In situ UV-visible spectroelectrochemistry and cyclic voltammetry of conducting N-methylpyrrole: indole copolymers on gold electrode. J Electrochem Soc. 2012;159:E73–81. https://doi.org/10.1149/2.023204jes

    Article  CAS  Google Scholar 

  53. Ge H, Qi G, Kang ET, Neoh KG. Study of overoxidized polypyrrole using X-ray photoelectron spectroscopy. Polymer. 1994;35:504–8. https://doi.org/10.1016/0032-3861(94)90503-7

    Article  CAS  Google Scholar 

  54. Rodríguez I, Scharifker BR, Mostany J. In situ FTIR study of redox and overoxidation processes in polypyrrole films. J Electroanal Chem. 2000;491:117–25. https://doi.org/10.1016/S0022-0728(00)00194-7

    Article  Google Scholar 

  55. Armes SP, Gottesfeld S, Beery JG, Garzon F, Agnew SF. Conducting polymer-colloidal silica composites. Polymer. 1991;32:2325–30. https://doi.org/10.1016/0032-3861(91)90068-T

    Article  CAS  Google Scholar 

  56. Tsai EW, Basak S, Ruiz JP, Reynolds JR, Rajeshwar K. Electrochemistry of some β-substituted polythiophenes anodic oxidation, electrochromism, and electrochemical deactivation. J Electrochem Soc. 1989;136:3683–9. https://doi.org/10.1149/1.2096530

    Article  CAS  Google Scholar 

  57. Fujii S, Armes SP, Jeans R, Devonshire R, Warren S, McArthur SL, et al. Synthesis and characterization of polypyrrole-coated sulfur-rich latex particles: New synthetic mimics for sulfur-based micrometeorites. Chem Mater. 2006;18:2758–65. https://doi.org/10.1021/cm0601741

    Article  CAS  Google Scholar 

  58. Bhattacharya A, De A, Das S. Electrochemical preparation and study of transport properties of polypyrrole doped with unsaturated organic sulfonates. Polymer. 1996;37:4375–82. https://doi.org/10.1016/0032-3861(96)00183-8

    Article  CAS  Google Scholar 

  59. Perruchot C, Chehimi MM, Delamar M, Lascelles SF, Armes SP. Surface characterization of polypyrrole-coated polystyrene latex by X-ray photoelectron spectroscopy. Langmuir. 1996;12:3245–51. https://doi.org/10.1021/la960057s

    Article  CAS  Google Scholar 

  60. Mravćáková M, Omastová M, Olejníková K, Pukánszky B, Chehimi MM. The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites: a comparative study. Synth Met. 2007;157:347–57. https://doi.org/10.1016/j.synthmet.2007.04.005

    Article  CAS  Google Scholar 

  61. Liu MJ, Tzou K, Gregory RV. Influence of the doping conditions on the surface energies of conducting polymer. Synth Met. 1994;63:67–71. https://doi.org/10.1016/0379-6779(94)90251-8

    Article  CAS  Google Scholar 

  62. Gelmi A, Ljunggren MK, Rafat M, Jager EWH. Influence of conductive polymer doping on the viability of cardiac progenitor cells. J Mater Chem B. 2014;2:3860–7. https://doi.org/10.1039/C4TB00142G

    Article  CAS  PubMed  Google Scholar 

  63. Li F, Winnik MA, Matvienko A, Mandelis A. Polypyrrole nanoparticles as a thermal transducer of NIR radiation in hot-melt adhesives. J Mater Chem. 2007;17:4309–15. https://doi.org/10.1039/B708707A

    Article  CAS  Google Scholar 

  64. Au KM, Chen M, Armes SP, Zheng N. Near-infrared light-triggered irreversible aggregation of poly(oligo(ethylene glycol) methacrylate)-stabilized polypyrrole nanoparticles under biologically relevant conditions. Chem Commun. 2013;49:10525–7. https://doi.org/10.1039/C3CC46385K

    Article  CAS  Google Scholar 

  65. Grzeszczuka M, Kepas A, Kvarnstrom C, Ivaska A. Effects of small octahedral mono, di, and trivalent hexafluoroanions on electronic and molecular structures of polypyrrole monitored by in situ UV–vis–NIR and resonance Raman spectroelectrochemical measurements. Synth Met. 2010;160:636–42. https://doi.org/10.1016/j.synthmet.2009.12.024

    Article  CAS  Google Scholar 

  66. Bredas JL, Scott JC, Yakuschi K, Street GB. Polarons and bipolarons in polypyrrole: Evolution of the band structure and optical spectrum upon doing. Phys Rev B. 1984;30:1023–5. https://doi.org/10.1103/PhysRevB.30.1023

    Article  CAS  Google Scholar 

  67. Jarosz T, Krukiewicz K, Lapkowski M, Domagala W. Spectroelectrochemical techniques as modern tools for investigating charge transfer processes in conjugated polymers. Chemik. 2015;69:485–90.

    CAS  Google Scholar 

  68. Han CC, Lee JT, Yang RW, Chang H, Han CH. A new and easy method for making micrometer-sized carbon tubes. Chem Commun. 1998;118:2087–8. https://doi.org/10.1039/A805057K

    Article  Google Scholar 

  69. Rozlívková Z, Trchová M, Exnerová M, Stejskal J. The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synth Met. 2011;161:1122–9. https://doi.org/10.1016/j.synthmet.2011.03.034

    Article  CAS  Google Scholar 

  70. Yamamoto D, Shioi A. Self-propelled nano/micromotors with a chemical reaction: underlying physics and strategies of motion control KONA Powder and Particle. Powder Part J. 2015;32:2–22. https://doi.org/10.14356/kona.2015005

    Article  Google Scholar 

  71. Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev. 2015;115:8704–35. https://doi.org/10.1021/acs.chemrev.5b00047

    Article  CAS  PubMed  Google Scholar 

  72. Sánchez S, Soler L, Katuri J. Chemically powered micro- and nanomotors. Angew Chem Int Ed. 2015;54:1414–44. https://doi.org/10.1002/anie.201406096

    Article  CAS  Google Scholar 

  73. Xu L, Mou F, Gong H, Luo M, Guan J. Light-driven micro/nanomotors: From fundamentals to applications. Chem Soc Rev. 2017;46:6905–26. https://doi.org/10.1039/C7CS00516D

    Article  CAS  PubMed  Google Scholar 

  74. Fujii S, Suzaki M, Armes SP, Dupin D, Hamasaki S, Aono K, et al. Liquid marbles prepared from pH-responsive sterically-stabilized latex particles. Langmuir. 2011;27:8067–74. https://doi.org/10.1021/la201317b

    Article  CAS  PubMed  Google Scholar 

  75. Fujii S, Aono K, Suzaki M, Hamasaki S, Yusa S, Nakamura Y. pH-Responsive hairy particles synthesized by dispersion polymerization with a macroinitiator as an inistab and their use as a gas-sensitive liquid marble stabilizer. Macromolecules. 2012;45:2863–73. https://doi.org/10.1021/ma300048m

    Article  CAS  Google Scholar 

  76. Vargaftik NB, Volkov BN, Voljak LD. International tables of the surface tension of water. J Phys Chem Ref Data. 1983;12:817. https://doi.org/10.1063/1.555688

    Article  CAS  Google Scholar 

  77. Ramkumar DHS, Kudchadker AP. Mixture properties of the water +.gamma.-butyrolactone + tetrahydrofuran system. Part 2. Viscosities and surface tensions of.gamma.-butyrolactone + water at 303.15-343.15 K and.gamma.-butyrolactone + tetrahydrofuran at 278.15-298.15 K. J Chem Eng Data. 1989;34:463–5. https://doi.org/10.1021/je00058a027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (B) (JSPS KAKENHI Grant Number JP16H04207) and the International Association for the Exchange of Students for Technical Experience (IAESTE). San-Ei Gen F.F.I., Inc. is thanked for a kind donation of Sunred YM dye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syuji Fujii.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šišáková, M., Asaumi, Y., Uda, M. et al. Dodecyl sulfate-doped polypyrrole derivative grains as a light-responsive liquid marble stabilizer. Polym J 52, 589–599 (2020). https://doi.org/10.1038/s41428-020-0307-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0307-z

This article is cited by

Search

Quick links