Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pyrolysis of a flash nanoprecipitated tannic acid–metal@polymer assembly to create an electrochemically active metal@nanocarbon catalyst

Abstract

Herein, hydrophobic tannic acid–iron (TA–Fe) coordination composites were encapsulated within polystyrene-copolyacrylonitrile (PS-c-PAN) nanospheres using the flash nanoprecipitation (FNP) technique. Carbon materials with uniform and dense distributions of metal NPs were obtained after carbonization under the protection and confinement of the polymer matrix. The as-prepared Fe and nitrogen codoped carbon materials exhibited enhanced electrocatalytic performance in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In addition, the catalytic ability of the carbon/metal composites could be affected by tuning the morphology and composition.

Highlights

  • The flash nanoprecipitation (FNP) technique was employed to prepare polymer nanomaterial-entrapped metal precursors.

  • The confinement function of polymers ensured a uniform distribution of metal NPs within the carbon matrix after carbonization.

  • The morphology and electrocatalytic activities of the obtained catalysts could be varied by changing the processing parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu MM, Zhang RZ, Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev. 2014;114:5117–60.

    CAS  PubMed  Google Scholar 

  2. Zhao J, Qin RX, Liu R. Urea-bridging synthesis of nitrogen-doped carbon tube supported single metallic atoms as bifunctional oxygen electrocatalyst for zinc-air battery. Appl Catal B—Environ. 2019;256:117778–86.

    Google Scholar 

  3. Lee DU, Xu P, Cano ZP, Kashkooli AG, Park MG, Chen ZW. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J Mater Chem A. 2016;4:7107–34.

    CAS  Google Scholar 

  4. Zhao J, Li CL, Liu R. Enhanced oxygen reduction of multi-Fe3O4@carbon core–shell electrocatalysts through a nanoparticle/polymer co-assembly strategy. Nanoscale. 2018;10:5882–7.

    CAS  PubMed  Google Scholar 

  5. Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486:43–51.

    CAS  PubMed  Google Scholar 

  6. Lee Y, Suntivich J, May KJ, Perry EE, Horn YS. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett. 2012;3:399–404.

    CAS  PubMed  Google Scholar 

  7. Qian YH, Hu ZG, Ge XM, Yang SL, Peng YW, Kang ZX, et al. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn–Air batteries. Carbon. 2017;111:641–50.

    CAS  Google Scholar 

  8. Su HY, Gorlin Y, Man IC, Calle-Vallejo F, Nørskov JK, Jaramillo TF, et al. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys Chem Chem Phys. 2012;14:14010–22.

    CAS  PubMed  Google Scholar 

  9. Esposito DV, Chen JG. Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy Environ Sci. 2011;4:3900–12.

    CAS  Google Scholar 

  10. Ding W, Wei ZD, Chen SG, Qi XQ, Yang T, Hu JS et al. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew Chem Int Ed. 2013;52:11755–9.

    CAS  Google Scholar 

  11. Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du AJ, et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc. 2011;133:20116–9.

    CAS  PubMed  Google Scholar 

  12. Carver CT, Matson BD, Mayer JM. Electrocatalytic oxygen reduction by iron tetra-arylporphyrins bearing pendant proton relays. J Am Chem Soc. 2012;134:5444–7.

    CAS  PubMed  Google Scholar 

  13. Samanta S, Sengupta K, Mittra K, Bandyopadhyay S, Dey A. Selective four electron reduction of O2 by an iron porphyrin electrocatalyst under fast and slow electron fluxes. Chem Commun. 2012;48:7631–3.

    CAS  Google Scholar 

  14. Lin L, Zhu Q, Xu AW. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J Am Chem Soc. 2014;136:11027–33.

    CAS  PubMed  Google Scholar 

  15. Lin QP, Bu XH, Kong AG, Mao CY, Bu F, Feng PY. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv Mater. 2015;27:3431–6.

    CAS  PubMed  Google Scholar 

  16. Lin QP, Bu XH, Kong AG, Mao CY, Zhao X, Bu F, et al. New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J Am Chem Soc. 2015;137:2235–8.

    CAS  PubMed  Google Scholar 

  17. Dai Y, Zhu GD, Shang XH, Zhu TZ, Yang JM, Liu JY. Electrospun zirconia-embedded carbon nanofibre for high-sensitive determination of methyl parathion. Electrochem Commun. 2017;81:14–7.

    CAS  Google Scholar 

  18. Mahendran V, Philip J. Sensing of biologically important cations such as Na+, K+, Ca2+, Cu2+, and Fe3+ using magnetic nanoemulsions. Langmuir. 2013;29:4252–8.

    CAS  PubMed  Google Scholar 

  19. Zhou D, Yang LP, Yu LH, Kong JH, Yao XY, Liu WS, et al. Fe/N/C hollow nanospheres by Fe(III)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale. 2015;7:1501–9.

    CAS  PubMed  Google Scholar 

  20. Li CL, Zhang ZJ, Wu MC, Liu R. FeCoNi ternary alloy embedded mesoporous carbon nanofiber: an efficient oxygen evolution catalyst for rechargeable zinc-air battery. Mater Lett. 2019;238:138–42.

    CAS  Google Scholar 

  21. Li CL, Wu MC, Liu R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl Catal B—Environ. 2019;244:150–8.

    CAS  Google Scholar 

  22. Zhang C, Pansare VJ, Prud’hommea RK, Priestley RD. Flash nanoprecipitation of polystyrene nanoparticles. Soft Matter. 2012;8:86–93.

    CAS  Google Scholar 

  23. Grundy LS, Lee VE, Li N, Sosa C, Mulhearn WD, Liu R, et al. Rapid production of internally structured colloids by flash nanoprecipitation of block copolymer blends. ACS Nano. 2018;12:4660–8.

    CAS  PubMed  Google Scholar 

  24. Liu R, Priestley RD. Rational design and fabrication of core-shell nanoparticles through a one-step/pot strategy. J Mater Chem A. 2016;4:6680–92.

    CAS  Google Scholar 

  25. Xue XY, Yu F, Peng BH, Wang G, Lv Y, Chen L, et al. One-step synthesis of nickel-iron layered double hydroxides with tungstate acid anions via flash nano-precipitation for the oxygen evolution reaction. Sustain Energ Fuels. 2019;3:237–44.

    CAS  Google Scholar 

  26. Liu R, Sosa C, Yeh YW, Qu FL, Yao N, Prud’hommea RK, et al. A one-step and scalable production route to metal nanocatalyst supported polymer nanospheres via flash nanoprecipitation. J Mater Chem A. 2014;2:17286–90.

    CAS  Google Scholar 

  27. D’Addio SM, Prud’homme RK. Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev. 2011;63:417–26.

    PubMed  Google Scholar 

  28. Zhang ZJ, Sun L, Liu R. Flash nanoprecipitation of polymer supported Pt colloids with tunable catalytic chromium reduction property. Colloid Polym Sci. 2018;296:327–33.

    CAS  Google Scholar 

  29. Zhu ZX, Xu P, Fan GK, Liu NN, Xu SQ, Li XL, et al. Fast synthesis and separation of nanoparticles via in-situ reactive flash nanoprecipitation and pH tuning. Chem Eng J. 2019;356:877–85.

    CAS  Google Scholar 

  30. Zhu ZX. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Mol Pharm. 2014;11:776–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gindy ME, Panagiotopoulos AZ, Prud’homme RK. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures. Langmuir. 2008;24:83–90.

    CAS  PubMed  Google Scholar 

  32. Tang C, Amin D, Messersmith PB, Anthony JE, Prud’homme RK. Polymer directed self-assembly of pH-responsive antioxidant nanoparticles. Langmuir. 2015;31:3612–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li CL, Zhao J, Priestley RD, Liu R. Constrained-volume assembly of organometal confined in polymer to fabricate multi-heteroatom doped carbon for oxygen reduction reaction. Sci China Mater. 2018;61:1305–13.

    CAS  Google Scholar 

  34. Li Q, Zhao J, Wu MC, Li CL, Han L, Liu R. Hierarchical porous N-doped carbon nanofibers supported Fe3C/Fe nanoparticles as efficient oxygen electrocatalysts for Zn–air batteries. ChemistrySelect. 2019;4:1–8.

    Google Scholar 

  35. Pinkerton NM, Hadri K, Amouroux B, Behar L, Mingotaud C, Destarac M, et al. Quench ionic flash nano precipitation as a simple and tunable approach to decouple growth and functionalization for the one-step synthesis of functional LnPO4-based nanoparticles in water. Chem Commun. 2018;54:9438–41.

    CAS  Google Scholar 

  36. Zhao J, Lee VE, Liu R, Priestley RD. Responsive polymers as smart nanomaterials enable diverse applications. Annu Rev Chem Biomol Eng. 2019;10:361–82.

    CAS  PubMed  Google Scholar 

  37. Yang TT, Li KX, Pu LT, Liu ZQ, Ge BC, Pan YJ, et al. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell. Biosens Bioelectron. 2016;86:129–34.

    CAS  PubMed  Google Scholar 

  38. Li XY, Jiang QQ, Dou S, Deng LB, Huo J, Wang SY. ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalysts. J Mater Chem A. 2016;4:15836–40.

    CAS  Google Scholar 

  39. Lu YZ, Jiang YY, Gao XH, Wang XD, Chen W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J Am Chem Soc. 2014;136:11687–97.

    CAS  PubMed  Google Scholar 

  40. Zhao J, Fu N, Liu R. Graphite-wrapped Fe core-shell nanoparticles anchored on graphene as pH-universal electrocatalyst for oxygen reduction reaction. ACS Appl Mater Interfaces. 2018;10:28509–16.

    CAS  PubMed  Google Scholar 

  41. Wang J, Li S, Zhu G, Zhao W, Chen R, Pan M. Novel non-noble metal electrocatalysts synthesized by heat-treatment of iron terpyridine complexes for the oxygen reduction reaction. J Power Sources. 2013;240:381–9.

    CAS  Google Scholar 

  42. Ye S, Vijh AK. Non-noble metal-carbonized aerogel composites as electrocatalysts for the oxygen reduction reaction. Electrochem Commun. 2003;5:272–5.

    CAS  Google Scholar 

  43. Li S, Zhang L, Liu H, Pan M, Zan L, Zhang J. Heat-treated cobalt–tripyridyl triazine (Co–TPTZ) electrocatalysts for oxygen reduction reaction in acidic medium. Electrochim Acta. 2010;55:4403–11.

    CAS  Google Scholar 

  44. Xiong J, Zhao J, Xiang Z, Li CL, Wu MC, Wang X, et al. Carbon nanotube@ZIF–derived Fe-N-doped carbon electrocatalysts for oxygen reduction and evolution reactions. J Solid State Electrochem. 2019;23:2225–32.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the National Natural Science Foundation of China (21774095), Shanghai Municipal Natural Science Foundation (17ZR1432200), start-up funding from Tongji University and the Young Thousand Talented Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, Z., Zhao, J. et al. Pyrolysis of a flash nanoprecipitated tannic acid–metal@polymer assembly to create an electrochemically active metal@nanocarbon catalyst. Polym J 52, 539–547 (2020). https://doi.org/10.1038/s41428-020-0305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0305-1

Search

Quick links