Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Preparation of poly(ethylene-2,6-naphthalate) nanofibers by CO2 laser supersonic drawing

Abstract

Poly(ethylene-2,6-naphthalate) (PEN) nanofibers were prepared by carbon dioxide laser supersonic drawing (CLSD). The CLSD method was carried out by irradiating the as-spun PEN fiber with a laser in a low-temperature supersonic jet. The supersonic jet was generated by blowing the air from the fiber supplying orifice into a vacuum chamber. The thinnest nanofiber obtained at a laser power of 4 W and a chamber pressure of −98 kPa had an average fiber diameter of 0.249 μm. The DSC curve of this nanofiber showed two melting peaks: 260 °C and 285 °C. The higher melting temperature is 25 °C higher than the melting temperature of the original fiber. The higher melting peak is caused by an increase in the intermolecular forces in the crystallite and by the tie molecules connecting adjacent crystallites becoming fully extended. Thus, nanofibers produced by CLSD exhibit a higher melting peak, which is a unique feature. The increase in melting temperature is attributed to the supramolecular sequence effect, which is a nanoscale effect. CLSD is a new method for making nanofibers without the use of any solvent or removal of a second component.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yeo Y, Jeon D, Kim C, Choi S, Cho K, Lee Y, et al. Effects of chitosan nonwoven membrane on periodontal healing of surgically created one‐wall intrabony defects in beagle dogs. J Biomed Mater Res. 2005;72B:86–93.

    Article  CAS  Google Scholar 

  2. Lee K, Givens S, Chase DB, Rabolt JF. Electrostatic polymer processing of isotactic poly(4-methyl-1-pentene) fibrous membrane. Polymer. 2006;47:8013–8.

    Article  CAS  Google Scholar 

  3. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43:4403–12.

    Article  CAS  Google Scholar 

  4. Meng J, Song L, Meng J, Kong H, Zhu G, Wang C, et al. Using single‐walled carbon nanotubes nonwoven films as scaffolds to enhance long‐term cell proliferation in vitro. J Biomed Mater Res. 2006;79A:298–306.

    Article  CAS  Google Scholar 

  5. You Y, Min BM, Lee SJ, Lee TS, Park WH. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide‐co‐glycolide). J Appl Polym Sci. 2005;95:193–200.

    Article  CAS  Google Scholar 

  6. Kim BS, Mooney DJ. Engineering smooth muscle tissue with a predefined structure. J Biomed Mater Res. 1998;41:322–32.

    Article  CAS  PubMed  Google Scholar 

  7. Higgins SP, Solan AK, Niklason LE. Effects of polyglycolic acid on porcine smooth muscle cell growth and differentiation. J Biomed Mater. 2003;67A:295–302.

    Article  CAS  Google Scholar 

  8. Jinming G, Niklason L, Langer R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J Biomed Mater Res. 1998;42:417–24.

    Article  Google Scholar 

  9. Eugene DB, Todd AT, David GS, Gary EW, Gary LB. Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. J Biomed Mater Res. 2004;71B:144–52.

    Article  Google Scholar 

  10. Ding B, Kimura E, Sato T, Fujita S, Shiratori S. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer. 2004;45:1895–902.

    Article  CAS  Google Scholar 

  11. Gupta P, Wilkes GL. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer. 2003;44:6353–9.

    Article  CAS  Google Scholar 

  12. Ayutsede J, Gandhi M, Sukigara S, Micklus M, Chen HE, Ko F. Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat. Polymer. 2005;46:1625–34.

    Article  CAS  Google Scholar 

  13. Fong H. Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer. 2004;45:2427–32.

    Article  CAS  Google Scholar 

  14. Kim JS, Reneker DH. Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci. 1999;39:849–54.

    Article  CAS  Google Scholar 

  15. Huang C, Chen S, Reneker DH, Lai C, Hou H. High‐Strength Mats from Electrospun Poly(p‐Phenylene Biphenyltetracarboximide) Nanofibers. Adv Mater. 2006;18:668–71.

    Article  CAS  Google Scholar 

  16. Qin X-H, Yang E-L, Li N, Wang S-Y. Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci. 2007;103:3865–70.

    Article  CAS  Google Scholar 

  17. Huang X-J, Ge D, Xu Z-K. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J. 2007;43:3710–8.

    Article  CAS  Google Scholar 

  18. Holzmeister A, Rudisile M, Greiner A, Wendorff JH. Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning. Eur Polym J. 2007;43:4859–67.

    Article  CAS  Google Scholar 

  19. Yee WA, Kotaki M, Liu Y, Lu X. Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer. 2007;48:512–21.

    Article  CAS  Google Scholar 

  20. Chen C, Wang L, Huang Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer. 2007;48:5202–7.

    Article  CAS  Google Scholar 

  21. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Corrigendum to “Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup”. Polymer. 2007;48:3306–16.

    Article  CAS  Google Scholar 

  22. Borkar S, Gu B, Dirmyer M, Delicado R, Sen AN, Jackson BR, et al. Polytetrafluoroethylene nano/microfibers by jet blowing. Polymer. 2006;47:8337–43.

    Article  CAS  Google Scholar 

  23. Suzuki A, Aoki K. Biodegradable poly(l-lactic acid) nanofiber prepared by a carbon dioxide laser supersonic drawing. Eur Polym J. 2008;44:2499–505.

    Article  CAS  Google Scholar 

  24. Suzuki A. Arino k. Polypropylene nanofiber sheets prepared by CO2 laser supersonic multi-drawing. Eur Polym J. 2012;48:1169–76.

    Article  CAS  Google Scholar 

  25. Suzuki A, Tanizawa K. Poly(ethylene terephthalate) nanofibers prepared by CO2 laser supersonic drawing. Polymer. 2009;50:913–21.

    Article  CAS  Google Scholar 

  26. Suzuki A, Yamada Y. Poly(ethylene‐2,6‐naphthalate) nanofiber prepared by carbon dioxide laser supersonic drawing. J Appl Polym Sci. 2010;116:1913–9.

    CAS  Google Scholar 

  27. Suzuki A, Shimizu R. Biodegradable poly(glycolic acid) nanofiber prepared by CO2 laser supersonic drawing. Appl Polym Sci. 2011;121:3078–84.

    Article  CAS  Google Scholar 

  28. Suzuki A, Hayashi H. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing. eXPRESS Polym Lett. 2013;7:519–27.

    Article  CAS  Google Scholar 

  29. Suzuki A, Mikuni T, Hasegawa T. Nylon 66 nanofibers prepared by CO2 laser supersonic drawing. J Appl Polym Sci. 2014;131:40015.

    Article  Google Scholar 

  30. Koyama H, Watanabe Y, Suzuki A. Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing. J Polym Eng. 2017;37:53–60.

    Article  CAS  Google Scholar 

  31. Suzuki A. Arino k. Poly(ethylene terephthalate) nanosheets prepared by CO2-laser supersonic multi-drawing. Polymer. 2010;51:1830–6.

    Article  CAS  Google Scholar 

  32. Suzuki A. Hosoi k, Miyagi K. Broad poly(ethylene terephthalate) nanofiber sheet prepared by CO2 laser supersonic continuous multi-drawing. Polymer. 2015;60:252–9.

    Article  CAS  Google Scholar 

  33. Suzuki A, Imajo K. Poly(l-lactic acid) nanofiber multifilament prepared by carbon dioxide laser supersonic multi-drawing. Polymer. 2016;91:24–32.

    Article  CAS  Google Scholar 

  34. Suzuki A, Shimba Y. Poly(l-lactic acid) twisted nanofiber yarn prepared by carbon dioxide laser supersonic multi-drawing. Eur Polym J. 2019;110:145–54.

    Article  CAS  Google Scholar 

  35. Suzuki A, Ohta K. Mechanical properties of poly(ethylene terephthalate) nanofiber three-dimensional structure prepared by CO2 laser supersonic drawing. J Appl Polym Sci 2017;135:45763.

    Article  Google Scholar 

  36. Büchner S, Wiswe D, Zachmann HG. Kinetics of crystallization and melting behaviour of poly (ethylene naphthalene-2,6-dicarboxylate). Polymer. 1989;30:480–8.

    Article  Google Scholar 

  37. Höhne GWH. Another approach to the Gibbs–Thomson equation and the melting point of polymers and oligomers. Polymer. 2002;43:4689–98.

    Article  Google Scholar 

  38. Vasanthan N, Salem DR. Structural and Conformational Characterization of Poly(ethylene 2,6-naphthalate) by Infrared Spectroscopy. Macromolecules. 1999;32:6319–25.

    Article  CAS  Google Scholar 

  39. Pearce R, Cole KC, Ajji A, Dumolin MM. Studies of post drawing relaxation phenomena in poly(ethylene terephthalate) by infrared spectroscopy. Polym Eng Sci. 1997;37:1795–1800.

    Article  CAS  Google Scholar 

  40. Ajji A, Cole KC, Dumolin MM, Ward IM. Orientation of amorphous poly(ethylene terephthalate) by tensile drawing, roll‐drawing, and die‐drawing. Polym Eng Sci. 1997;37:1801–8.

    Article  CAS  Google Scholar 

  41. Ülçer Y, Cakmak M. Texture of injection moulded poly(ethylene-2,6-naphthalene dicarboxylate) parts. Polymer. 1997;38:2907–23.

    Article  Google Scholar 

  42. Suzuki A, Kawada T, Hasegawa T. Changes in superstructure and mechanical properties of poly(ethylene‐2,6‐naphthalate) fibers with critical necking tension. J Polym Sci Part B Polym Phys. 2001;39:1629–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akihiro Suzuki or Yasutaka Oshiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Oshiro, Y. Preparation of poly(ethylene-2,6-naphthalate) nanofibers by CO2 laser supersonic drawing. Polym J 53, 593–601 (2021). https://doi.org/10.1038/s41428-020-00460-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00460-0

Search

Quick links