Abstract
Cleavage of siloxane bonds (Si-O) in organosiloxanes (OSs) is one of the most fundamentally and practically important challenges in the modern chemistry of silicones. However, no benign approaches have been found to cleave these bonds under mild conditions. In this paper, siloxane bond cleavage in polydimethylsiloxane (PDMS) was studied using a mixture of the “green” reagent dimethyl carbonate (DMC) and an environmentally benign reagent, tris(pentafluorophenyl)borane (B(C6F5)3). The obtained results indicate that the Si-O bonds are cleaved by reaction with DMC to form lower-weight polymer fragments with alkoxy end groups, while the addition of B(C6F5)3 to the depolymerizing mixture significantly increases the degree of PDMS depolymerization at room temperature or with increasing temperature. Quantum chemical calculations show that the DMC molecules form stable complexes with B(C6F5)3 by preferable formation of C=O····B bonds, which increases the solvation effects and kinetic energy upon collision with PDMS. This result provides an appropriate electronic structure and orientation for the complexes for more effective interaction with Si-O-Si via a concert mechanism. This proposed benign approach can be used for the production of new OS polymers, silicone recycling and functionalization of metal or metalloid oxides.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Kobayashi R, Ishida S, Iwamoto T. An isolable silicon analogue of a ketone that contains an unperturbed Si=O double bond. Angew Chem. 2019;58:9425–8.
Brook MA. Silicon in organic, organometallic, and polymer chemistry. Wiley-Interscience, New York, 2000.
Matsumoto K, Oba Y, Nakajima Y, Shimada S, Sato K. One pot sequence‐controlled synthesis of oligosiloxanes. Angew Chem. 2018;57:4637–1.
Matsumoto K, Sajna KV, Satoh Y, Sato K, Shimada S. By-product-free siloxane-bond formation and programmed one-pot oligosiloxane synthesis. Angew Chem. 2017;56:3168–1.
Wang Y, Kostenko A, Hadlington TJ, Luecke M-P, Yao S, Driess M. Silicon-mediated selective homo- and heterocoupling of carbon monoxide. J Am Chem Soc. 2019;141:626–4.
Jones RG, Ando W, Chojnowski J. Silicon-containing polymers. Kluwer Academic Publishers, Dordrecht, 2000.
Goncharova IK, Silaeva KP, Arzumanyan AV, Anisimov AA, Milenin SA, Novikov R, et al. Aerobic Co-/N-hydroxysuccinimide-catalyzed oxidation of p-tolylsiloxanes to p-carboxyphenylsiloxanes: synthesis of functionalized siloxanes as promising building blocks for siloxane-based materials. J Am Chem Soc. 2019;141:2143–1.
Gun’ko VM, Turov VV, Krupska TV, Protsak IS, Borysenko MV, Pakhlov EM. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J Colloid Interface Sci. 2019;541:213–5.
Protsak IS, Morozov YM, Dong W, Le Z, Zhang D, Henderson IM. A 29Si, 1H, and 13C solid-state NMR study on the surface species of various depolymerized organosiloxanes at silica surface. Nanoscale Res Lett. 2019;14:160.
Sulym IY, Borysenko MV, Goncharuk OV, Terpilowski K, Sternik D, Chibowski E, et al. Structural and hydrophobic–hydrophilic properties of nanosilica/zirconia alone and with adsorbed PDMS. Appl Surf Sci. 2011;258:270–7.
Krug DJ, Asuncion MZ, Laine RM. Facile approach to recycling highly cross-linked thermoset silicone resins under ambient conditions. ACS Omega. 2019;4:3782–9.
Weidauer M, Heyder B, Woelki D, Tschiersch M, Köhler-Krützfeldt A, Enthaler S. Iron-catalyzed depolymerizations of end-of-life silicones with fatty alcohols. REFFIT. 2015;1:73–9.
Brook MA, Zhao S, Liu L, Chen Y. Surface etching of silicone elastomers by depolymerization. Can J Chem. 2012;90:153–0.
Okamoto M, Suzuki S, Suzuki E. Polysiloxane depolymerization with dimethyl carbonate using alkali metal halide catalysts. Appl Catal A. 2004;261:239–5.
Selva M, Fabrisa M, Perosa A. Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chem. 2011;13:863–2.
Protsak I, Henderson IM, Tertykh V, Dong W, Le Z. Cleavage of organosiloxanes with dimethyl carbonate: a mild approach to graft-to-surface modification. Langmuir. 2018;34:9719–0.
Ono Y, Akiyama M, Suzuki E. Direct synthesis of tetraalkoxysilanes from silica by reaction with dialkyl carbonates. Chem Mater. 1993;5:442–7.
Parks DJ, Piers WE. Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones and esters. J Am Chem Soc. 1996;118:9440–1.
Lee JN, Park C, Whitesides GM. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem. 2003;75:6544–4.
Acknowledgements
This research was supported by the Center for Integrated Nanotechnologies, an Office of the Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396); Sandia National Laboratories (Contract DE-NA-0003525). This research was partially supported by the China Postdoctoral Science Foundation (grant Z741020001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
41428_2020_452_MOESM1_ESM.docx
Intermediates of tris(pentafluorophenyl)borane and dimethyl carbonate pave the way for deeper organosiloxane depolymerization reaction
Rights and permissions
About this article
Cite this article
Protsak, I., Gun’ko, V., Morozov, Y. et al. Intermediates of tris(pentafluorophenyl)borane and dimethyl carbonate pave the way for deeper organosiloxane depolymerization reactions. Polym J 53, 573–579 (2021). https://doi.org/10.1038/s41428-020-00452-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41428-020-00452-0