Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications


One promising application of self-healing polymeric materials is biomedical use. Although charge-transfer (CT) interactions have been employed to construct self-healing polymers as well as other reversible bonds and interactions, their potential for biomedical applications has never been investigated. In this study, we fabricated self-healable and cell-compatible polyurethane elastomers cross-linked by CT complexes between electron-rich pyrene (Py) and electron-deficient naphthalene diimide (NDI) by simply blending two linear polymers with Py or NDI as a repeating unit. The elastomers with different blend ratios self-healed damage over 1 day in mild conditions, including in air and water at 30–100 °C. The mechanical properties of damaged elastomers were almost restored after healing in air at 100 °C, and even in air at 30 °C and in water at 70 °C, healing was also possible to a certain extent. The good cell compatibility of the polyurethane elastomers was demonstrated by culturing two kinds of cells on the thin film substrates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Herbst F, Döhler D, Michael P, Binder WH. Self-healing polymers via supramolecular forces. Macromol Rapid Commun. 2013;34:203–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Harada A, Takashima Y, Nakahata M. Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc Chem Res. 2014;47:2128–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Roy N, Bruchmann B, Lehn J-M. DYNAMERS: dynamic polymers as self-healing materials. Chem Soc Rev. 2015;44:3786–807.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Yang Y, Ding X, Urban MW. Chemical and physical aspects of self-healing materials. Prog Polym Sci. 2015;49-50:34–59.

    CAS  Article  Google Scholar 

  5. 5.

    Imato K, Otsuka H. Dynamic Covalent Chemistry: Principles, Reactions and Applications. In: Zhang W, Jin Y, editors. Hoboken, NJ, USA: John Wiley & Sons; 2017. p. 359–87.

  6. 6.

    Imato K, Otsuka H. Reorganizable and stimuli-responsive polymers based on dynamic carbon-carbon linkages in diarylbibenzofuranones. Polymer. 2018;137:395–413.

    CAS  Article  Google Scholar 

  7. 7.

    Dahlke J, Zechel S, Hager MD, Schubert US. How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials. Adv Mater Interfaces. 2018;50:1800051.

    Article  Google Scholar 

  8. 8.

    Diesendruck CE, Sottos NR, Moore JS, White SR. Biomimetic self-healing. Angew Chem Int Ed. 2015;54:10428–47.

    CAS  Article  Google Scholar 

  9. 9.

    Patrick JF, Robb MJ, Sottos NR, Moore JS, White SR. Polymers with autonomous life-cycle control. Nature. 2016;540:363–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Levchenko I, Bazaka K, Belmonte T, Keidar M, Xu S. Advanced materials for next-generation spacecraft. Adv Mater. 2018;41:1802201.

    Article  CAS  Google Scholar 

  11. 11.

    Tu Y, Chen N, Li C, Liu H, Zhu R, Chen S, et al. Advances in injectable self-healing biomedical hydrogels. Acta Biomater. 2019;90:1–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, et al. Self‐healing hydrogels: the next paradigm shift in tissue engineering? Adv Sci. 2019;6:1801664.

    Article  CAS  Google Scholar 

  13. 13.

    Uman S, Dhand A, Burdick JA. Recent advances in shear‐thinning and self‐healing hydrogels for biomedical applications. J Appl Polym Sci. 2019;336:48668–20.

    Google Scholar 

  14. 14.

    Yanagisawa Y, Nan Y, Okuro K, Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science. 2018;359:72–76.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Zhao J, Xu R, Luo G, Wu J, Xia H. Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility. Polym Chem. 2016;7:7278–86.

    CAS  Article  Google Scholar 

  16. 16.

    Zhao J, Xu R, Luo G, Wu J, Xia H. A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer. J Mater Chem B. 2016;4:982–9.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Daemi H, Rajabi-Zeleti S, Sardon H, Barikani M, Khademhosseini A, Baharvand H. A robust super-tough biodegradable elastomer engineered by supramolecular ionic interactions. Biomaterials. 2016;84:54–63.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chen S, Bi X, Sun L, Gao J, Huang P, Fan X, et al. Poly(sebacoyl diglyceride) cross-linked by dynamic hydrogen bonds: a self-healing and functionalizable thermoplastic bioelastomer. ACS Appl Mater Interfaces. 2016;8:20591–9.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Wu Y, Wang L, Zhao X, Hou Sen, Guo B, Ma PX. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials. 2016;104:18–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Liu L, Zhu L, Zhang L. A solvent-resistant and biocompatible self-healing supramolecular elastomer with tunable mechanical properties. Macromol Chem Phys. 2017;219:1700409–7.

    Article  CAS  Google Scholar 

  21. 21.

    Tallia F, Russo L, Li S, Orrin ALH, Shi X, Chen S, et al. Bouncing and 3D printable hybrids with self-healing properties. Mater Horiz. 2018;5:849–60.

    CAS  Article  Google Scholar 

  22. 22.

    Li F, Ye Q, Gao Q, Chen H, Shi SQ, Zhou W, et al. Facile fabrication of self-healable and antibacterial soy protein-based films with high mechanical strength. ACS Appl Mater Interfaces. 2019;11:16107–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Liu J, Duan W, Song J, Guo X, Wang Z, Shi X, et al. Self-healing hyper-cross-linked metal–organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J Am Chem Soc. 2019;141:12064–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Zeimaran E, Pourshahrestani S, Kadri NA, Kong D, Shirazi SFS, Naveen SV, et al. Self‐healing polyester urethane supramolecular elastomers reinforced with cellulose nanocrystals for biomedical applications. Macromol Biosci. 2019;19:1900176–12.

    CAS  Article  Google Scholar 

  25. 25.

    Imato K, Yamanaka R, Nakajima H, Takeda N. Fluorescent supramolecular mechanophores based on charge-transfer interactions. Chem Commun. 2020;56:7937–40.

    CAS  Article  Google Scholar 

  26. 26.

    Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008;451:977–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, et al. Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater. 2018;30:1802792–7.

    Article  CAS  Google Scholar 

  28. 28.

    Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, et al. A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions. Chem Commun. 2009;6717–9.

  29. 29.

    Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, et al. A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J Am Chem Soc. 2010;132:12051–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, et al. High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc. 2012;134:5362–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Hart LR, Harries JL, Greenland BW, Colquhoun HM, Hayes W. Supramolecular approach to new inkjet printing inks. ACS Appl Mater Interfaces. 2015;7:8906–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Hart LR, Nguyen NA, Harries JL, Mackay ME, Colquhoun HM, Hayes W. Perylene as an electron-rich moiety in healable, complementary π-π stacked, supramolecular polymer systems. Polymer. 2015;69:293–300.

    CAS  Article  Google Scholar 

  33. 33.

    Qin J, Lin F, Hubble D, Wang Y, Li Y, Murphy IA, et al. Tuning self-healing properties of stiff, ion-conductive polymers. J Mater Chem A. 2019;7:6773–83.

    CAS  Article  Google Scholar 

  34. 34.

    Xiao W-X, Liu D, Fan C-J, Xiao Y, Yang K-K, Wang Y-Z. A high-strength and healable shape memory supramolecular polymer based on pyrene-naphthalene diimide complexes. Polymer. 2020;190:122228.

    Article  CAS  Google Scholar 

  35. 35.

    Imato K, Takahara A, Otsuka H. Self-healing of a cross-linked polymer with dynamic covalent linkages at mild temperature and evaluation at macroscopic and molecular levels. Macromolecules. 2015;48:5632–9.

    CAS  Article  Google Scholar 

  36. 36.

    Imato K, Natterodt JC, Sapkota J, Goseki R, Weder C, Takahara A, et al. Dynamic covalent diarylbibenzofuranone-modified nanocellulose: mechanochromic behaviour and application in self-healing polymer composites. Polym Chem. 2017;8:2115–22.

    CAS  Article  Google Scholar 

  37. 37.

    Kim S-M, Jeon H, Shin S-H, Park S-A, Jegal J, Hwang SY, et al. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv Mater. 2018;30:1705145–8.

    Article  CAS  Google Scholar 

  38. 38.

    Zhang L, Liu Z, Wu X, Guan Q, Chen S, Sun L, et al. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv Mater. 2019;31:1901402–8.

    Article  CAS  Google Scholar 

  39. 39.

    Hornat CC, Urban MW. Entropy and interfacial energy driven self-healable polymers. Nat Commun. 2020;11:1028.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Gunatillake PA, Adhikari R, Gadegaard N. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater. 2003;5:1–16.

    CAS  Article  Google Scholar 

  41. 41.

    Teo AJT, Mishra A, Park I, Kim Y-J, Park WT, Yoon YJ. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng. 2016;2:454–72.

    CAS  Article  Google Scholar 

  42. 42.

    Imato K, Nishihara M, Kanehara T, Amamoto Y, Takahara A, Otsuka H. Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew Chem Int Ed. 2012;51:1138–42.

    CAS  Article  Google Scholar 

  43. 43.

    Imato K, Ohishi T, Nishihara M, Takahara A, Otsuka H. Network reorganization of dynamic covalent polymer gels with exchangeable diarylbibenzofuranone at ambient temperature. J Am Chem Soc. 2014;136:11839–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, et al. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew Chem Int Ed. 2015;54:6168–72.

    CAS  Article  Google Scholar 

  45. 45.

    Imato K, Kanehara T, Nojima S, Ohishi T, Higaki Y, Takahara A, et al. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers. Chem Commun. 2016;52:10482–5.

    CAS  Article  Google Scholar 

  46. 46.

    Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater. 2013;12:932–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Nakahata M, Takashima Y, Harada A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction. Macromol Rapid Commun. 2016;37:86–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    He D, Arisaka Y, Masuda K, Yamamoto M, Takeda N. A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran-conjugated amphiphilic block copolymer. Acta Biomater. 2017;51:101–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Tamada Y, Yoshito I. Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J Colloid Interface Sci. 1993;155:334–9.

    CAS  Article  Google Scholar 

  50. 50.

    Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117:4376–421.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references


This work was supported by JSPS KAKENHI (Grant No. 16H07292 and 19K15623, KI), MEXT LEADER (Grant No. A6501, KI), and the Izumi Science and Technology Foundation (Grant No. H29-J-113, KI). A research grant from the Mitsubishi Materials–Faculty of Science and Engineering, Waseda University (2016, 2018) and a Grant for Young Scientists Encouragement from the Waseda Research Institute for Science and Engineering–JXTG Energy (2017) are also acknowledged for financial support.

Author information



Corresponding authors

Correspondence to Keiichi Imato or Naoya Takeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imato, K., Nakajima, H., Yamanaka, R. et al. Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polym J (2020).

Download citation