Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Structural evolution of β-iPP with different supermolecular structures during the simultaneous biaxial stretching process

Abstract

Two different supermolecular structures of β-iPP cast films were used to investigate structural evolution during the simultaneous biaxial stretching process via small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Based on the mechanical behaviors and porosity variations during the stretching process, it was found that the two samples had different structural evolution modes. During the initial stage of deformation, β-hedrites exhibited violent cavitation behavior in the center region of the hedrites by forming elliptical crazes and expanding, while β-spherulites were more inclined to fragment into blocky crystal structures, which was accompanied by the slippage of these structures. In the later stages of stretching, β-hedrites formed numerous dense regions around the elliptical crazes, which hindered microvoid formation and led to a poor pore size distribution. Conversely, β-spherulites generated abundant microfibrillar structures, and abundant microvoids were formed by directly separating the microfibrils, forming a membrane with a superior pore size distribution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arora P, Zhang ZJ. Battery separators. Chem Rev. 2004;104:4419–62.

    CAS  PubMed  Google Scholar 

  2. Lopez J, Mackanic DG, Cui Y, Bao Z. Designing polymers for advanced battery chemistries. Nat Rev Mater. 2019;4:312–30.

    CAS  Google Scholar 

  3. Kalnaus S, Wang Y, Li J, Kumar A, Turner JA. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries. Extrem Mech Lett. 2018;20:73–80.

    Google Scholar 

  4. Deimede V, Elmasides C. Separators for Lithium-Ion Batteries: a Review on the Production Processes and Recent Developments. Energy Technol. 2015;3:453–68.

    Google Scholar 

  5. Huang X. Separator technologies for lithium-ion batteries. J Solid State Electr. 2010;15:649–62.

    Google Scholar 

  6. Costa CM, Lizundia E, Lanceros-Méndez S. Polymers for advanced lithium-ion batteries: state of the art and future needs on polymers for the different battery components. Prog Energy Combust Sci. 2020;79:100846.

    Google Scholar 

  7. Costa CM, Lee Y-H, Kim J-H, Lee S-Y, Lanceros-Méndez S. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Mater. 2019;22:346–75.

    Google Scholar 

  8. Wu G-G, Chen W-B, Ding C, Xu L-Y, Liu Z-Y, Yang W, et al. Pore formation mechanism of oriented β polypropylene cast films during stretching and optimization of stretching methods: In-situ SAXS and WAXD studies. Polymer. 2019;163:86–95.

    CAS  Google Scholar 

  9. Zhang C, Liu G, Song Y, Zhao Y, Wang D. Structural evolution of β – iPP during uniaxial stretching studied by in–situ WAXS and SAXS. Polymer. 2014;55:6915–23.

    CAS  Google Scholar 

  10. Lin Y, Meng L, Wu L, Li X, Chen X, Zhang Q, et al. A semi-quantitative deformation model for pore formation in isotactic polypropylene microporous membrane. Polymer. 2015;80:214–27.

    CAS  Google Scholar 

  11. Luo B, Li Z, Zhang J, Wang X. Formation of anisotropic microporous isotactic polypropylene (iPP) membrane via thermally induced phase separation. Desalination. 2008;233:19–31.

    CAS  Google Scholar 

  12. Zhao C, He J, Li J, Tong J, Xiong J. Preparation and properties of UHMWPE microporous membrane for lithium ion battery diaphragm. IOP Conference Series: Materials Science and Engineering. 2018;324:012089.

    Google Scholar 

  13. Shi G-y, Chu F, Zhou G-e, Han Z-w. Plastic deformation and solid-phase transformation in β-phase polypropylene. Die Makromol Chem. 1989;190:907–13.

    CAS  Google Scholar 

  14. Chu F, Yamaoka T, Kimura Y. Crystal transformation and micropore formation during uniaxial drawing of β-form polypropylene film. Polymer. 1995;36:2523–30.

    CAS  Google Scholar 

  15. Wu T, Xiang M, Cao Y, Kang J, Yang F. Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv. 2014;4:36689–701.

    CAS  Google Scholar 

  16. Ding L, Xu R, Pu L, Yang F, Wu T, Xiang M. Pore formation and evolution mechanism during biaxial stretching of β-iPP used for lithium-ion batteries separator. Mater Design. 2019;179:107880.

    CAS  Google Scholar 

  17. Offord GT, Armstrong SR, Freeman BD, Baer E, Hiltner A, Swinnea JS, et al. Porosity enhancement in β nucleated isotactic polypropylene stretched films by thermal annealing. Polymer. 2013;54:2577–89.

    CAS  Google Scholar 

  18. Fischer S, Diesner T, Rieger B, Marti O. Simulating and evaluating small-angle X-ray scattering of micro-voids in polypropylene during mechanical deformation. J Appl Crystallogr. 2010;43:603–10.

    CAS  Google Scholar 

  19. Varga J. β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Part B. 2007;41:1121–71.

    Google Scholar 

  20. Jones AT, Aizlewood JM, Beckett DR. Crystalline Forms of Isotactic Polypropylene. Makromol Chem. 1964;75:134–58.

    Google Scholar 

  21. Bai H, Wang Y, Zhang Z, Han L, Li Y, Liu L, et al. Influence of Annealing on Microstructure and Mechanical Properties of Isotactic Polypropylene with β-Phase Nucleating Agent. Macromolecules. 2009;42:6647–55.

    CAS  Google Scholar 

  22. Olley RH, Bassett DC. An improved permanganic etchant for polyolefines. Polymer. 1982;23:1707–10.

    CAS  Google Scholar 

  23. Xiong B, Kang J, Chen R, Men Y. Initiation of cavitation upon drawing of pre-oriented polypropylene film: in situ SAXS and WAXD studies. Polymer. 2017;128:57–64.

    CAS  Google Scholar 

  24. Nitta K-h, Sawada T, Yoshida S, Kawamura T. Three dimensional molecular orientation of isotactic polypropylene films under biaxial deformation at higher temperatures. Polymer. 2015;74:30–37.

    CAS  Google Scholar 

  25. Lu X, Li X. Preparation of polyvinylidene fluoride membrane via a thermally induced phase separation using a mixed diluent. J Appl Polym Sci. 2009;114:1213–9.

    CAS  Google Scholar 

  26. Li X, Wu H, Huang T, Shi Y, Wang Y, Xiang F, et al. β/α Transformation of β-polypropylene during tensile deformation: effect of crystalline morphology. Colloid Polym Sci. 2010;288:1539–49.

    CAS  Google Scholar 

  27. Vaughan AS. The Morphology of Semicrystalline Polymers. Sci Prog. 1992;76:1–65.

    CAS  Google Scholar 

  28. Humbert S, Lame O, Chenal J-M, Rochas C, Vigier G. Small strain behavior of polyethylene: in situ SAXS measurements. J Polym Sci, Part B: Polym Phys. 2010;48:1535–42.

    CAS  Google Scholar 

  29. Hay IL, Keller A. Polymer deformation in terms of spherulites. Kolloid-Z Z für Polym. 1965;204:43–74.

    CAS  Google Scholar 

  30. Bao R-Y, Ding Z-T, Liu Z-Y, Yang W, Xie B-H, Yang M-B. Deformation-induced structure evolution of oriented β-polypropylene during uniaxial stretching. Polymer. 2013;54:1259–68.

    CAS  Google Scholar 

  31. Kawai T, Soeno S, Kuroda S-i, Koido S, Nemoto T, Tamada M. Deformation induced void formation and growth in β nucleated isotactic polypropylene. Polymer. 2019;178:121523.

    CAS  Google Scholar 

  32. Cai Z, Zhang Y, Li J, Xue F, Shang Y, He X, et al. Real time synchrotron SAXS and WAXS investigations on temperature related deformation and transitions of β-iPP with uniaxial stretching. Polymer. 2012;53:1593–601.

    CAS  Google Scholar 

  33. Lezak E, Bartczak Z. Plastic deformation behavior of β phase isotactic polypropylene in plane-strain compression at elevated temperatures. J Polym Sci, Part B: Polym Phys. 2008;46:92–108.

    CAS  Google Scholar 

  34. Lezak E, Bartczak Z, Galeski A. Plastic deformation behavior of β-phase isotactic polypropylene in plane-strain compression at room temperature. Polymer. 2006;47:8562–74.

    CAS  Google Scholar 

  35. Chang B, Schneider K, Xiang F, Vogel R, Roth S, Heinrich G. Critical Strains for Lamellae Deformation and Cavitation during Uniaxial Stretching of Annealed Isotactic Polypropylene. Macromolecules. 2018;51:6276–90.

    CAS  Google Scholar 

  36. Zhang X, Schneider K, Liu G, Chen J, Brüning K, Wang D, et al. Deformation-mediated superstructures and cavitation of poly (l-lactide): In-situ small-angle X-ray scattering study. Polymer. 2012;53:648–56.

    CAS  Google Scholar 

  37. Hubert L, David L, Séguéla R, Vigier G. Small-angle X-ray scattering investigation of the deformation processes in the amorphous phase of high density polyethylene. Polym Int. 2004;53:582–5.

    CAS  Google Scholar 

  38. Huy TA, Adhikari R, Lüpke T, Henning S, Michler GH. Molecular deformation mechanisms of isotactic polypropylene in α- and β-crystal forms by FTIR spectroscopy. J Polym Sci, Part B: Polym Phys. 2004;42:4478–88.

    CAS  Google Scholar 

  39. Pawlak A, Galeski A, Rozanski A. Cavitation during deformation of semicrystalline polymers. Prog Polym Sci. 2014;39:921–58.

    CAS  Google Scholar 

  40. Lu Y, Men Y. Cavitation‐Induced Stress Whitening in Semi‐Crystalline Polymers. Macromol Mater Eng. 2018;303:1800203.

    Google Scholar 

  41. Galeski A, Rozanski A. Cavitation during Drawing of Crystalline Polymers. Macromol Symposia. 2010;298:1–9.

    CAS  Google Scholar 

  42. Nitta KH, Takayanagi M. Direct observation of the deformation of isolated huge spherulites in isotactic polypropylene. J Mater Sci. 2003;38:4889–94.

    CAS  Google Scholar 

  43. Zhang D, Ding L, Yang F, Lan F, Cao Y, Xiang M. Effect of annealing on the microvoid formation and evolution during biaxial stretching of β nucleated isotactic polypropylene. Polym-Plast Technol Mater. 2020;59:1595–607.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to the Natural Science Foundation of China for financial support (51721091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Ding, L., Yang, F. et al. Structural evolution of β-iPP with different supermolecular structures during the simultaneous biaxial stretching process. Polym J 53, 331–344 (2021). https://doi.org/10.1038/s41428-020-00430-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00430-6

This article is cited by

Search

Quick links