Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emerging nanoscience with discotic liquid crystals

Abstract

Discotic liquid crystals (DLCs) are one-dimensional organic semiconducting materials and represent new low cost, rejuvenating materials in optoelectronics. The development of novel supramolecular materials based on liquid crystals (LCs) hybridized with various metallic, semiconducting, and carbon-based materials with optimized functionalities on the nanometer scale attracted much attention in liquid crystal nanoscience. The ability to combine supramolecular liquid crystalline chemistry with nanoscience is very attractive for several reasons. This review focuses on our recent advances in discotic liquid crystal nanoscience. Driven by the self-assembly of both liquid crystals and nanostructures, LC–nanomaterial nanocomposites (LC–NCs) are spontaneously formed through molecular self-organization at the nanometer scale. The careful design of different LC–NCs through enhanced LC properties opened a new era for organic electronics. A brief introduction to LCs is presented with emphasis on DLCs, which is followed by recent developments in the self-assembly of various nanostructures in discotics. We focus on how nanostructures can be self-assembled in such supramolecular materials so that self-organizing functional systems of discotics can be created with tuned physical properties, such as the thermal stability, optoelectronic and dielectric parameters, and response time, in LCs. We conclude this review by discussing the further development of nanoscience with LCs and applications in organic electronics.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB. Structural diversity in binary nanoparticle superlattices. Nature. 2006;439:55–9.

    CAS  PubMed  Google Scholar 

  2. Mann S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater. 2009;8:781–92.

    CAS  PubMed  Google Scholar 

  3. Katz E, Willner I. Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed. 2004;43:6042–108.

    CAS  Google Scholar 

  4. Wang X, Miller DS, Bukusoglu E, De Pablo JJ, Abbott NL. Topological defects in liquid crystals as templates for molecular self-assembly. Nat Mater. 2016;15:106–12.

    CAS  PubMed  Google Scholar 

  5. Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–29.

    CAS  PubMed  Google Scholar 

  6. Kaafarani BR. Discotic liquid crystals for opto-electronic applications. Chem Mater. 2011;23:378–96.

    CAS  Google Scholar 

  7. McNeill A, Bushby R, Evans S, Liu Q, Movaghar B. Discotic liquid crystals. In: 3D nanoelectronic computer architecture and implementation. CRC Press; Boca Raton; 2020, pp. 203–23.

  8. Kumar M, Kumar S. Liquid crystals in photovoltaics: a new generation of organic photovoltaics. Polym J. 2017;49:85–111.

    CAS  Google Scholar 

  9. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12:908–31.

    CAS  Google Scholar 

  10. Sargent EH. Colloidal quantum dot solar cells. Nat Photonics. 2012;6:133–5.

    CAS  Google Scholar 

  11. Pradhan N, Xu H, Peng X. Colloidal CdSe quantum wires by oriented attachment. Nano Lett. 2006;6:720–4.

    CAS  PubMed  Google Scholar 

  12. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev. 2005;249:1870–901.

    Google Scholar 

  13. Sharma P, Ahuja P. Recent advances in carbon nanotube-based electronics. Mater Res Bull. 2008;43:2517–26.

    CAS  Google Scholar 

  14. Avouris P, Dimitrakopoulos C. Graphene: synthesis and applications. Mater Today. 2012;15:86–97.

    CAS  Google Scholar 

  15. Ferrari AC, Bonaccorso F, Fal’Ko V, Novoselov KS, Roche S, Bøggild P, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7:4598–810.

    CAS  PubMed  Google Scholar 

  16. Choi W, Lahiri I, Seelaboyina R, Kang YS. Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci. 2010;35:52–71.

    CAS  Google Scholar 

  17. Bisoyi HK, Kumar S. Carbon-based liquid crystals: art and science. Liq Cryst. 2011;38:1427–49.

    CAS  Google Scholar 

  18. Garbovskiy YA, Glushchenko AV. Liquid crystalline colloids of nanoparticles: preparation, properties, and applications. In: Solid state physics, vol. 62. Elsevier; California; 2010, pp. 1–474.

  19. Lagerwall JP, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio-and microtechnology. Curr Appl Phys. 2012;12:1387–412.

    Google Scholar 

  20. Nealon GL, Greget R, Dominguez C, Nagy ZT, Guillon D, Gallani J-L, et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J Org Chem. 2012;8:349–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stamatoiu O, Mirzaei J, Feng X, Hegmann T. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. In: Liquid crystals. Springer; Berlin, Heidelberg; 2011, pp. 331–93.

  22. Umadevi S, Ganesh V, Hegmann T. Nanoparticles: additives and building blocks for liquid crystal phases. In: Handbook of liquid crystals. Weinheim, Wiley-VCH; 2014, pp. 1–50.

  23. Kumar S. Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Mater. 2014;6:e82.

    CAS  Google Scholar 

  24. Kumar S. Nanoparticles in the supramolecular order of discotic liquid crystals. Liq Cryst. 2014;41:353–67.

    CAS  Google Scholar 

  25. Bisoyi HK, Kumar S. Discotic nematic liquid crystals: science and technology. Chem Soc Rev. 2010;39:264–85.

    CAS  PubMed  Google Scholar 

  26. Kawata K. Orientation control and fixation of discotic liquid crystal. Chem Rec. 2002;2:59–80.

    CAS  PubMed  Google Scholar 

  27. Boden N, Bushby RJ, Cammidge AN, Clements J, Luo R, Donovan KJ. Transient photoconductivity and dark conductivity in discotic liquid crystals. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst. 1995;261:251–7.

    CAS  Google Scholar 

  28. Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals.J Phys Chem. 1996;100:468–71.

    CAS  Google Scholar 

  29. Kumar S. Chemistry of discotic liquid crystals: from monomers to polymers. CRC press; Boca Raton; 2016.

  30. van de Craats AM, Warman JM. The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv Mater. 2001;13:130–3.

    Google Scholar 

  31. Pisula W, Feng X, Müllen K. Charge-carrier transporting graphene-type molecules. Chem Mater. 2011;23:554–67.

    CAS  Google Scholar 

  32. Wöhrle T, Wurzbach I, Kirres J, Kostidou A, Kapernaum N, Litterscheidt J, et al. Discotic liquid crystals. Chem Rev. 2016;116:1139–241.

    PubMed  Google Scholar 

  33. Arikainen EO, Boden N, Bushby RJ, Lozman OR, Vinter JG, Wood A. Complimentary polytopic interactions. Angew Chem. 2000;112:2423–6.

    Google Scholar 

  34. Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40:306–19.

    CAS  PubMed  Google Scholar 

  35. Kumar M, Varshney S, Gowda A, Kumar S. Silver nanodisks in soft discotic forest: Impact on self-assembly, conductivity and molecular packing. J Mol Liq. 2017;241:666–74.

    CAS  Google Scholar 

  36. Varshney S, Kumar M, Gowda A, Kumar S. Soft discotic matrix with 0-D silver nanoparticles: impact on molecular ordering and conductivity. J Mol Liq. 2017;238:290–5.

    CAS  Google Scholar 

  37. Arikainen EO, Boden N, Bushby RJ, Clements J, Movaghar B, Wood A. Effects of side-chain length on the charge transport properties of discotic liquid crystals and their implications for the transport mechanism. J Mater Chem. 1995;5:2161–5.

    CAS  Google Scholar 

  38. Staffeld P, Kaller M, Beardsworth S, Tremel K, Ludwigs S, Laschat S, et al. Design of conductive crown ether based columnar liquid crystals: impact of molecular flexibility and geometry. J Mater Chem C. 2013;1:892–901.

    CAS  Google Scholar 

  39. Boden N, Bushby R, Clements J. Electron transport along molecular stacks in discotic liquid crystals. J Mater Sci Mater Electron. 1994;5:83–8.

    CAS  Google Scholar 

  40. Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chem Rev. 2007;107:718–47.

    CAS  PubMed  Google Scholar 

  41. Hanna J-I. Charge carrier transport in liquid crystalline semiconductors. In: Liquid crystalline semiconductors. Springer; Dordrecht; 2013, pp. 39–64.

  42. Ohta K, Hatsusaka K, Sugibayashi M, Ariyoshi M, Ban K, Maeda F, et al. Discotic liquid crystalline semiconductors. Mol Cryst Liq Crys. 2003;397:25–45.

    Google Scholar 

  43. Kumar PS, Kumar S, Lakshminarayanan V. Electrical conductivity studies on discotic liquid crystal–ferrocenium donor–acceptor systems.J Phys Chem B. 2008;112:4865–9.

    CAS  PubMed  Google Scholar 

  44. Balagurusamy V, Prasad SK, Chandrasekhar S, Kumar S, Manickam M, Yelamaggad C. Quasi-one dimensional electrical conductivity and thermoelectric power studies on a discotic liquid crystal. Pramana. 1999;53:3–11.

    CAS  Google Scholar 

  45. García-Frutos EM, Pandey UK, Termine R, Omenat A, Barberá J, Serrano JL, et al. High charge mobility in discotic liquid-crystalline triindoles: just a core business? Angew Chem. 2011;123:7537–40.

    Google Scholar 

  46. Iino H, Hanna J-i, Haarer D, Bushby RJ. Fast electron transport in discotic columnar phases of triphenylene derivatives. Jpn J Appl Phys. 2006;45:430.

    CAS  Google Scholar 

  47. Olivier Y, Muccioli L, Lemaur V, Geerts Y, Zannoni C, Cornil J. Theoretical characterization of the structural and hole transport dynamics in liquid-crystalline phthalocyanine stacks.J Phys Chem B. 2009;113:14102–11.

    CAS  PubMed  Google Scholar 

  48. Adam D, Schuhmacher P, Simmerer J, Häussling L, Siemensmeyer K, Etzbachi K, et al. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature. 1994;371:141–3.

    CAS  Google Scholar 

  49. Bleyl I, Erdelen C, Schmidt H-W, Haarer D. One-dimensional hopping transport in a columnar discotic liquid-crystalline glass. Philos Mag B. 1999;79:463–75.

    CAS  Google Scholar 

  50. van de Craats AM, Warman JM, de Haas MP, Adam D, Simmerer J, Haarer D, et al. The mobility of charge carriers in all four phases of the columnar discotic material hexakis (hexylthio) triphenylene: combined TOF and PR-TRMC results. Adv Mater. 1996;8:823–6.

    Google Scholar 

  51. Kreouzis T, Scott K, Donovan K, Boden N, Bushby R, Lozman O, et al. Enhanced electronic transport properties in complementary binary discotic liquid crystal systems. Chem Phys. 2000;262:489–97.

    CAS  Google Scholar 

  52. Yaduvanshi P, Kumar S, Dhar R. Effects of copper nanoparticles on the thermodynamic, electrical and optical properties of a disc-shaped liquid crystalline material showing columnar phase. Phase Transit. 2015;88:489–502.

    CAS  Google Scholar 

  53. Yaduvanshi P, Mishra A, Kumar S, Dhar R. Enhancement in the thermodynamic, electrical and optical properties of hexabutoxytriphenylene due to copper nanoparticles. J Mol Liq. 2015;208:160–4.

    CAS  Google Scholar 

  54. Gowda AN, Kumar M, Thomas AR, Philip R, Kumar S. Self-assembly of silver and gold nanoparticles in a metal-free phthalocyanine liquid crystalline matrix: structural, thermal, electrical and nonlinear optical characterization. ChemistrySelect. 2016;1:1361–70.

    CAS  Google Scholar 

  55. Shivanandareddy AB, Krishnamurthy S, Lakshminarayanan V, Kumar S. Mutually ordered self-assembly of discotic liquid crystal–graphene nanocomposites. Chem Commun. 2014;50:710–2.

    CAS  Google Scholar 

  56. Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, et al. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat Mater. 2009;8:421–6.

    CAS  PubMed  Google Scholar 

  57. Kim D-H, Jahn A, Cho S-J, Kim JS, Ki M-H, Kim D-D. Lyotropic liquid crystal systems in drug delivery: a review. J Pharm Investig. 2015;45:1–11.

    CAS  Google Scholar 

  58. Helfinstine S, Lavrentovich O, Woolverton C. Lyotropic liquid crystal as a real-time detector of microbial immune complexes. Lett Appl Microbiol. 2006;43:27–32.

    CAS  PubMed  Google Scholar 

  59. Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293:1119–22.

    CAS  Google Scholar 

  60. Bushby RJ, Lozman OR. Discotic liquid crystals 25 years on. Curr Opin Colloid Interface Sci. 2002;7:343–54.

    CAS  Google Scholar 

  61. Si G, Zhao Y, Leong ESP, Liu YJ. Liquid-crystal-enabled active plasmonics: a review. Materials. 2014;7:1296–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4:676.

    CAS  Google Scholar 

  63. Sutkowski M, Kujawińska M. Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms. Opt Lasers Eng. 2000;33:191–201.

    Google Scholar 

  64. Shenoy DK, Thomsen DL III, Srinivasan A, Keller P, Ratna BR. Carbon coated liquid crystal elastomer film for artificial muscle applications. Sens Actuators A Phys. 2002;96:184–8.

    CAS  Google Scholar 

  65. Bisoyi HK, Li Q. Stimuli directed alignment of self-organized one-dimensional semiconducting columnar liquid crystal nanostructures for organic electronics. Prog Mater Sci. 2019;104:1–52.

    CAS  Google Scholar 

  66. Hegmann T, Qi H, Marx VM. Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym. 2007;17:483–508.

    CAS  Google Scholar 

  67. Qi H, Hegmann T. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J Mater Chem. 2008;18:3288–94.

    CAS  Google Scholar 

  68. Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq Cryst. 2004;31:1037–59.

    CAS  Google Scholar 

  69. Kumar S, Bisoyi HK. Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew Chem Int Ed. 2007;46:1501–3.

    CAS  Google Scholar 

  70. Kumar M, Gowda A, Kumar S. Discotic liquid crystals with graphene: supramolecular self-assembly to applications. Part Part Syst Char. 2017;34:1700003.

    Google Scholar 

  71. Qi H, Kinkead B, Hegmann T. Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters. Adv Funct Mater. 2008;18:212–21.

    CAS  Google Scholar 

  72. Kumar S, Lakshminarayanan V. Inclusion of gold nanoparticles into a discotic liquid crystalline matrix. Chem Commun. 2004: 1600–1.

  73. Supreet, Pratibha R, Kumar S, Raina K. Effect of dispersion of gold nanoparticles on the optical and electrical properties of discotic liquid crystal. Liq Cryst. 2014;41:933–9.

    CAS  Google Scholar 

  74. Kumar PS, Pal SK, Kumar S, Lakshminarayanan V. Dispersion of thiol stabilized gold nanoparticles in lyotropic liquid crystalline systems. Langmuir. 2007;23:3445–9.

    CAS  PubMed  Google Scholar 

  75. Kumar S, Pal SK, Kumar PS, Lakshminarayanan V. Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter. 2007;3:896–900.

    CAS  PubMed  Google Scholar 

  76. Mishra M, Kumar S, Dhar R. Effect of high concentration of colloidal gold nanoparticles on the thermodynamic, optical, and electrical properties of 2, 3, 6, 7, 10, 11-hexabutyloxytryphenylene discotic liquid crystalline material. Soft Mater. 2017;15:34–44.

    CAS  Google Scholar 

  77. Mishra M, Kumar S, Dhar R. Effect of dispersed colloidal gold nanoparticles on the electrical properties of a columnar discotic liquid crystal. RSC Adv. 2014;4:62404–12.

    CAS  Google Scholar 

  78. Mishra M, Kumar S, Dhar R. Gold nanoparticles in plastic columnar discotic liquid crystalline material. Thermochim Acta. 2016;631:59–70.

    CAS  Google Scholar 

  79. Tripathi P, Mishra M, Kumar S, Dhar R. Thermodynamic study of a plastic columnar discotic material 2, 3, 6, 7, 10, 11-hexabutyloxytriphenylene dispersed with gold nanoparticles under elevated pressure. J Therm Anal Calorim. 2017;129:315–22.

    CAS  Google Scholar 

  80. Rahman ML, Biswas TK, Sarkar SM, Yusoff MM, Yuvaraj A, Kumar S. Synthesis of new liquid crystals embedded gold nanoparticles for photoswitching properties. J Colloid Interface Sci. 2016;478:384–93.

    CAS  PubMed  Google Scholar 

  81. Roy A, Singh BP, Yadav G, Khan H, Kumar S, Srivastava A, et al. Effect of gold nanoparticles on intrinsic material parameters and luminescent characteristics of nematic liquid crystals. J Mol Liq. 2019;295:111872.

    CAS  Google Scholar 

  82. Yaduvanshi P, Mishra A, Kumar S, Dhar R. Effect of silver nanoparticles on frequency and temperature-dependent electrical parameters of a discotic liquid crystalline material. Liq Cryst. 2015;42:1478–89.

    CAS  Google Scholar 

  83. Sutherland RL. Optical limiters, switches, and filters based on polymer dispersed liquid crystals. In Liquid Crystal Chemistry, Physics, and Applications, Proc. SPIE. 1989;1080:83–90.

  84. Tabiryan N, Sukhov A, Zel’Dovich BY. Orientational optical nonlinearity of liquid crystals. Mol Cryst Liq Crys. 1986;136:1–139.

    CAS  Google Scholar 

  85. Vinayakumara D, Kumar M, Sreekanth P, Philip R, Kumar S. Synthesis, characterization and nonlinear optical studies of novel blue-light emitting room temperature truxene discotic liquid crystals. RSC Adv. 2015;5:26596–603.

    CAS  Google Scholar 

  86. Vimal T, Kumar Gupta S, Katiyar R, Srivastava A, Czerwinski M, Krup K, et al. Effect of metallic silver nanoparticles on the alignment and relaxation behaviour of liquid crystalline material in smectic C* phase. J Appl Phys. 2017;122:114102.

    Google Scholar 

  87. Tripathi P, Mishra M, Kumar S, Dabrowski R, Dhar R. Dependence of physical parameters on the size of silver nano particles forming composites with a nematic liquid crystalline material. J Mol Liq. 2018;268:403–9.

    CAS  Google Scholar 

  88. SJ S, Gupta R, Kumar S, Manjuladevi V. Enhanced electro-optical response of nematic liquid crystal doped with functionalised silver nanoparticles in twisted nematic configuration. Liq Cryst. 2020:1–13. https://doi.org/10.1080/02678292.2020.1755901.

  89. SJ S, Gupta RK, Kumar S. Effect of functionalised silver nanoparticle on the elastic constants and ionic transport of a nematic liquid crystal. Liq Cryst. 2019;46:1868–76.

    CAS  Google Scholar 

  90. Thuy UTD, Toan PS, Chi TTK, Khang DD, Liem NQ. CdTe quantum dots for an application in the life sciences. Adc Nat Sci-Nanosci. 2011;1:045009.

    Google Scholar 

  91. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–8.

    CAS  PubMed  Google Scholar 

  92. Nguyen TH, Ung TDT, Vu TH, Tran TKC, Dinh DK, Nguyen QL. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus. Adc Nat Sci-Nanosci. 2012;3:035014.

    Google Scholar 

  93. Kershaw SV, Harrison M, Rogach AL, Kornowski A. Development of IR-emitting colloidal II-VI quantum-dot materials. IEEE J Sel Top Quantum Electron. 2000;6:534–43.

    CAS  Google Scholar 

  94. Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H. Dynamic distribution of growth rates within the ensembles of colloidal II−VI and III−V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J Am Chem Soc. 2002;124:5782–90.

    CAS  PubMed  Google Scholar 

  95. Murray C, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15.

    CAS  Google Scholar 

  96. Selinsky RS, Ding Q, Faber MS, Wright JC, Jin S. Quantum dot nanoscale heterostructures for solar energy conversion. Chem Soc Rev. 2013;42:2963–85.

    CAS  PubMed  Google Scholar 

  97. Kumar S, Sagar LK. CdSe quantum dots in a columnar matrix. Chem Commun. 2011;47:12182–4.

    CAS  Google Scholar 

  98. Kumar M, Kumar S. Luminescent CdTe quantum dots incarcerated in a columnar matrix of discotic liquid crystals for optoelectronic applications. RSC Adv. 2015;5:1262–7.

    CAS  Google Scholar 

  99. Gupta SK, Singh DP, Manohar R, Kumar S. Tuning phase retardation behaviour of nematic liquid crystal using quantum dot. Curr Appl Phys. 2016;16:79–82.

    Google Scholar 

  100. Singh U, Pandey M, Dhar R, Verma R, Kumar S. Effect of dispersion of CdSe quantum dots on phase transition, electrical and electro-optical properties of 4PP4OB. Liq Cryst. 2016;43:1075–82.

    CAS  Google Scholar 

  101. Singh U, Singh D, Kumar S, Dhar R, Pandey M. The optical properties of quantum dots in anisotropic media. J Mol Liq. 2017;241:1009–12.

    CAS  Google Scholar 

  102. Singh D, Pandey S, Manohar R, Kumar S, Pujar G, Inamdar S. Time-resolved fluorescence and absence of Förster resonance energy transfer in ferroelectric liquid crystal-quantum dots composites. J Lumin. 2017;190:161–70.

    CAS  Google Scholar 

  103. Pandey S, Singh DP, Agrahari K, Srivastava A, Czerwinski M, Kumar S, et al. CdTe quantum dot dispersed ferroelectric liquid crystal: transient memory with faster optical response and quenching of photoluminescence. J Mol Liq. 2017;237:71–80.

    CAS  Google Scholar 

  104. Singh DP, Boussoualem Y, Duponchel B, Sahraoui AH, Kumar S, Manohar R, et al. Pico-ampere current sensitivity and CdSe quantum dots assembly assisted charge transport in ferroelectric liquid crystal. J Phys D Appl Phys. 2017;50:325301.

    Google Scholar 

  105. Yadav N, Kumar S, Dhar R. Cadmium selenide quantum dots for the amelioration of the properties of a room temperature discotic liquid crystalline material. RSC Adv. 2015;5:78823–32.

    CAS  Google Scholar 

  106. Kumar M, Kumar S. Stacking of ultra-thin reduced graphene oxide nanoparticles in supramolecular structures for optoelectronic applications. RSC Adv. 2015;5:14871–8.

    CAS  Google Scholar 

  107. Mahesh P, Shah A, Swamynathan K, Singh DP, Douali R, Kumar S. Carbon dots dispersed hexabutyloxytriphenylene discotic mesogens: structural, morphological and charge transport behavior. J Mater Chem C. 2020;8:9252–61.

    CAS  Google Scholar 

  108. Feng X, Sosa-Vargas L, Umadevi S, Mori T, Shimizu Y, Hegmann T. Discotic liquid crystal-functionalized gold nanorods: 2-and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π interactions. Adv Funct Mater. 2015;25:1180–92.

    CAS  Google Scholar 

  109. Shivanandareddy AB, Kumar M, Gowda A, Kumar S. Trapping of inorganic nanowires in supramolecular organic nanoribbons. J Mol Liq. 2017;244:1–6.

    CAS  Google Scholar 

  110. Shivanandareddy AB, Kumar M, Kumar S. Lyotropic liquid crystals of CdS nanoribbons. J Mol Liq. 2018;264:352–7.

    CAS  Google Scholar 

  111. Shivanandareddy AB, Kumar M, Lakshminarayanan V, Kumar S. Self-assembly of thiolated graphene oxide onto a gold surface and in the supramolecular order of discotic liquid crystals. RSC Adv. 2015;5:47692–47700.

    CAS  Google Scholar 

  112. Avinash B, Lakshminarayanan V, Kumar S, Vij J. Gold nanorods embedded discotic nanoribbons. Chem Commun. 2013;49:978–80.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank our collaborators, whose work was presented by us in this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manish Kumar or Sandeep Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Varshney, S. & Kumar, S. Emerging nanoscience with discotic liquid crystals. Polym J 53, 283–297 (2021). https://doi.org/10.1038/s41428-020-00414-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00414-6

Keywords

  • Nanomaterials
  • Self-assembly
  • Discotic liquid crystal
  • Nanowires
  • Graphene
  • Quantum dots

Search

Quick links