Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanostructure-assisted optical tweezers for microspectroscopic polymer analysis

Abstract

Raman/fluorescence microspectroscopic analysis of individual polymer chains and nanobeads dissolved in solution will become a powerful analytical method to study their molecular structure and characteristics. With this motivation, we focused on the use of Raman microspectroscopy for optically trapped soft matter. A tightly focused near-infrared laser beam formed a microassembly of thermoresponsive polymer chains such as poly(N-isopropylacrylamide) due to a local photothermal effect and optical force. By using this method, we developed a technique for determining the polymer concentration in a polymer microassembly. Furthermore, we demonstrated a molecular condensation and detection technique based on microassembly on plasmonic nanostructures. For this molecular condensation and detection process, localized surface plasmons play an essential role in the optical force enhancement and local temperature increase around the plasmonic nanostructures. Finally, aiming toward novel manipulation methods of smaller soft nanomaterials, nanostructured semiconductor-assisted (NASSCA) optical tweezers are introduced. In this paper, we reviewed the optical manipulation methods of polymer chains and nanobeads and their applications in analytical chemistry.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Part A Chem. 1968;2:1441–55.

    CAS  Google Scholar 

  2. Fujishige S, Kubota K, Ando I. Phase transition of aqueous solutions of poly (N-isopropylacrylamide) and poly (N-isopropylmethacrylamide). J Phys Chem. 1989;93:3311–3.

    CAS  Google Scholar 

  3. Wu C, Zhou S. Thermodynamically stable globule state of a single poly(N-isopropylacrylamide) chain in water. Macromolecules. 1995;28:5388–90.

    CAS  Google Scholar 

  4. Wang X, Qiu X, Wu C. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N -isopropylacrylamide) homopolymer chain in water. Macromolecules. 1998;31:2972–6.

    CAS  Google Scholar 

  5. Wu C, Wang X. Globule-to-coil transition of a single homopolymer chain in solution. Phys Rev Lett. 1998;80:4092–4.

    CAS  Google Scholar 

  6. Cheng H, Shen L, Wu C. LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules. 2006;39:2325–9.

    CAS  Google Scholar 

  7. Kujawa P, Segui F, Shaban S, Diab C, Okada Y, Tanaka F, et al. Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water. Macromolecules. 2006;39:341–8.

    CAS  Google Scholar 

  8. Kuang C, Yusa S, Sato T. Micellization and phase separation in aqueous solutions of thermosensitive block copolymer poly(N-isopropylacrylamide)-b-poly(N-vinyl-2-pyrrolidone) upon heating. Macromolecules. 2019;52:4812–9.

    CAS  Google Scholar 

  9. Meier-Koll A, Pipich V, Busch P, Papadakis CM, Müller-Buschbaum P. Phase separation in semidilute aqueous poly(N-isopropylacrylamide) solutions. Langmuir. 2012;28:8791–8.

    CAS  PubMed  Google Scholar 

  10. Stieger M, Pedersen JS, Lindner P, Richtering W. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir. 2004;20:7283–92.

    CAS  PubMed  Google Scholar 

  11. Maeda Y, Higuchi T, Ikeda I. Change in hydration state during the coil−globule transition of aqueous solutions of poly(N -isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir. 2000;16:7503–9.

    CAS  Google Scholar 

  12. Plamper FA, Steinschulte AA, Hofmann CH, Drude N, Mergel O, Herbert C, et al. Toward copolymers with ideal thermosensitivity: solution properties of linear, well-defined polymers of N-isopropyl acrylamide and N,N-diethyl acrylamide. Macromolecules. 2012;45:8021–6.

    CAS  Google Scholar 

  13. Ahmed Z, Gooding EA, Pimenov KV, Wang L, Asher SA. UV resonance Raman determination of molecular mechanism of poly(N-isopropylacrylamide) volume phase transition. J Phys Chem B. 2009;113:4248–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ono Y, Shikata T. Hydration and dynamic behavior of poly(N-isopropylacrylamide)s in aqueous solution: a sharp phase transition at the lower critical solution temperature. J Am Chem Soc. 2006;128:10030–1.

    CAS  PubMed  Google Scholar 

  15. Füllbrandt M, Ermilova E, Asadujjaman A, Hölzel R, Bier FF, von Klitzing R, et al. Dynamics of linear poly(N -isopropylacrylamide) in water around the phase transition investigated by dielectric relaxation spectroscopy. J Phys Chem B. 2014;118:3750–9.

    PubMed  Google Scholar 

  16. Starovoytova L, Spěváček J. Effect of time on the hydration and temperature-induced phase separation in aqueous polymer solutions. 1H NMR study. Polymer. 2006;47:7329–34.

    CAS  Google Scholar 

  17. Spěváček J, Konefał R, Čadová E. NMR study of thermoresponsive block copolymer in aqueous solution. Macromol Chem Phys. 2016;217:1370–5.

    Google Scholar 

  18. Tiktopulo EI, Bychkova VE, Ricka J, Ptitsyn OB. Cooperativity of the coil-globule transition in a homopolymer: microcalorimetric study of poly(N-isopropylacrylamide). Macromolecules. 1994;27:2879–82.

    CAS  Google Scholar 

  19. Zhou X, Li J, Wu C, Zheng B. Constructing the phase diagram of an aqueous solution of poly(n-isopropyl acrylamide) by controlled microevaporation in a nanoliter microchamber. Macromol Rapid Commun. 2008;29:1363–7.

    CAS  Google Scholar 

  20. Tsuboi Y, Yoshida Y, Okada K, Kitamura N. Phase separation dynamics of aqueous solutions of thermoresponsive polymers studied by a laser T-jump technique. J Phys Chem B. 2008;112:2562–5.

    CAS  PubMed  Google Scholar 

  21. Tsuboi Y, Tada T, Shoji T, Kitamura N. Phase-separation dynamics of aqueous poly (N-isopropylacrylamide) solutions: characteristic behavior of the molecular weight and concentration dependences. Macromol Chem Phys. 2012;213:1879–84.

    CAS  Google Scholar 

  22. Tada T, Katsumoto Y, Goossens K, Uji-i H, Hofkens J, Shoji T, et al. Accelerating the phase separation in aqueous poly(N-isopropylacrylamide) solutions by slight modification of the polymer stereoregularity: a Single Molecule Fluorescence Study. J Phys Chem C. 2013;117:10818–24.

    CAS  Google Scholar 

  23. Tada T, Hirano T, Ute K, Katsumoto Y, Asoh T-A, Shoji T, et al. Effects of syndiotacticity on the dynamic and static phase separation properties of poly(N-isopropylacrylamide) in aqueous solution. J Phys Chem B. 2016;120:7724–30.

    CAS  PubMed  Google Scholar 

  24. Matsumoto M, Wakabayashi R, Tada T, Asoh T-A, Shoji T, Kitamura N, et al. Rapid phase separation in aqueous solution of temperature-sensitive poly(N, N -diethylacrylamide). Macromol Chem Phys. 2016;217:2576–83.

    CAS  Google Scholar 

  25. Matsumoto M, Tada T, Asoh T-A, Shoji T, Nishiyama T, Horibe H, et al. Dynamics of the phase separation in a thermoresponsive polymer: accelerated phase separation of stereocontrolled poly(N, N-diethylacrylamide) in water. Langmuir. 2018;34:13690–6.

    CAS  PubMed  Google Scholar 

  26. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58:1655–70.

    CAS  PubMed  Google Scholar 

  27. Nagase K, Yamato M, Kanazawa H, Okano T. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials. 2018;153:27–48.

    CAS  PubMed  Google Scholar 

  28. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387–408.

    PubMed  Google Scholar 

  29. Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering—a review. J Mater Chem B. 2020;8:607–28.

    CAS  PubMed  Google Scholar 

  30. Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, et al. Poly(N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications. Polymers. 2020;12:580.

    CAS  PubMed Central  Google Scholar 

  31. Maeda Y, Yamamoto H, Ikeda I. Phase separation of aqueous solutions of poly(N-isopropylacrylamide) investigated by confocal Raman microscopy. Macromolecules. 2003;36:5055–7.

    CAS  Google Scholar 

  32. Ashkin A, Dziedzic JM. Optical levitation by radiation pressure. Appl Phys Lett. 1971;19:283–5.

    Google Scholar 

  33. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986;11:288.

    CAS  PubMed  Google Scholar 

  34. Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769–71.

    CAS  PubMed  Google Scholar 

  35. Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci. 1997;94:4853–60.

    CAS  PubMed  Google Scholar 

  36. Ashkin A, Dziedzic J. Optical trapping and manipulation of viruses and bacteria. Science. 1987;235:1517–20.

    CAS  PubMed  Google Scholar 

  37. Tsuboi Y, Nishino M, Sasaki T, Kitamura N. Poly(N-Isopropylacrylamide) microparticles produced by radiation pressure of a focused laser beam: a structural analysis by confocal raman microspectroscopy combined with a laser-trapping technique. J Phys Chem B. 2005;109:7033–9.

    CAS  PubMed  Google Scholar 

  38. Tsuboi Y, Nishino M, Matsuo Y, Ijiro K, Kitamura N. Phase separation of aqueous poly(vinyl methyl ether) solutions induced by the photon pressure of a focused near-infrared laser beam. Bull Chem Soc Jpn. 2007;80:1926–31.

    CAS  Google Scholar 

  39. Shoji T, Nohara R, Kitamura N, Tsuboi Y. A method for an approximate determination of a polymer-rich-domain concentration in phase-separated poly(N-isopropylacrylamide) aqueous solution by means of confocal Raman microspectroscopy combined with optical tweezers. Anal Chim Acta. 2015;854:118–21.

    CAS  PubMed  Google Scholar 

  40. Shoji T, Sugo D, Nagasawa F, Murakoshi K, Kitamura N, Tsuboi Y. Highly sensitive detection of organic molecules on the basis of a poly(N-isopropylacrylamide) microassembly formed by plasmonic optical trapping. Anal Chem. 2017;89:532–7.

    CAS  PubMed  Google Scholar 

  41. Shoji T, Mototsuji A, Balčytis A, Linklater D, Juodkazis S, Tsuboi Y. Optical tweezing and binding at high irradiation powers on black-Si. Sci Rep. 2017;7:12298.

    PubMed  PubMed Central  Google Scholar 

  42. Hanasaki I, Shoji T, Tsuboi Y. Regular assembly of polymer nanoparticles by optical trapping enhanced with a random array of Si needles for reconfigurable photonic crystals in liquid. ACS Appl Nano Mater. 2019;2:7637–43.

    CAS  Google Scholar 

  43. Svoboda K, Block SM. Optical trapping of metallic Rayleigh particles. Opt Lett. 1994;19:930.

    CAS  PubMed  Google Scholar 

  44. Kendrick MJ, McIntyre DH, Ostroverkhova O. Wavelength dependence of optical tweezer trapping forces on dye-doped polystyrene microspheres. J Opt Soc Am B. 2009;26:2189–98.

    CAS  Google Scholar 

  45. Hosokawa C, Yoshikawa H, Masuhara H. Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection. Phys Rev E. 2004;70:061410.

    Google Scholar 

  46. Tsuboi Y, Shoji T, Kitamura N. Crystallization of lysozyme based on molecular assembling by photon pressure. Jpn J Appl Phys. 2007;46:L1234–L1236.

    CAS  Google Scholar 

  47. Tsuboi Y, Shoji T, Nishino M, Masuda S, Ishimori K, Kitamura N. Optical manipulation of proteins in aqueous solution. Appl Surf Sci. 2009;255:9906–8.

    CAS  Google Scholar 

  48. Shoji T, Kitamura N, Tsuboi Y. Resonant excitation effect on optical trapping of myoglobin: the important role of a heme cofactor. J Phys Chem C. 2013;117:10691–7.

    CAS  Google Scholar 

  49. Tsuboi Y, Shoji T, Kitamura N. Optical trapping of amino acids in aqueous solutions. J Phys Chem C. 2010;114:5589–93.

    CAS  Google Scholar 

  50. Yan H, Hou Y-F, Niu P-F, Zhang K, Shoji T, Tsuboi Y, et al. Biodegradable PLGA nanoparticles loaded with hydrophobic drugs: confocal Raman microspectroscopic characterization. J Mater Chem B. 2015;3:3677–80.

    CAS  PubMed  Google Scholar 

  51. Yang J, Zhang R-N, Liu D-J, Zhou X, Shoji T, Tsuboi Y, et al. Laser trapping/confocal Raman spectroscopic characterization of PLGA-PEG nanoparticles. Soft Matter. 2018;14:8090–4.

    CAS  PubMed  Google Scholar 

  52. Borowicz P, Hotta J, Sasaki K, Masuhara H. Laser-controlled association of poly(N-vinylcarbazole) in organic solvents: radiation pressure effect of a focused near-infrared laser beam. J Phys Chem B. 1997;101:5900–4.

    CAS  Google Scholar 

  53. Borowicz P, Hotta J, Sasaki K, Masuhara H. Chemical and optical mechanism of microparticle formation of Poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam. J Phys Chem B. 1998;102:1896–901.

    CAS  Google Scholar 

  54. Singer W, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Collecting single molecules with conventional optical tweezers. Phys Rev E. 2007;75:011916.

    Google Scholar 

  55. Ishikawa M, Misawa H, Kitamura N, Masuhara H. Poly(N-isopropylacrylamide) microparticle formation in water by infrared laser-induced photo-thermal phase transition. Chem Lett. 1993;22:481–4.

    Google Scholar 

  56. Ishikawa M, Misawa H, Kitamura N, Fujisawa R, Masuhara H. Infrared laser-induced photo-thermal phase transition of an aqueous poly(N-isopropylacrylamide) solution in the micrometer dimension. Bull Chem Soc Jpn. 1996;69:59–66.

    CAS  Google Scholar 

  57. Masuo S, Yoshikawa H, Nothofer H-G, Grimsdale AC, Scherf U, Müllen K, et al. Assembling and orientation of polyfluorenes in solution controlled by a focused near-infrared laser beam. J Phys Chem B. 2005;109:6917–21.

    CAS  PubMed  Google Scholar 

  58. Nabetani Y, Yoshikawa H, Grimsdale AC, Müllen K, Masuhara H. Effects of optical trapping and liquid surface deformation on the laser microdeposition of a polymer assembly in solution. Langmuir. 2007;23:6725–9.

    CAS  PubMed  Google Scholar 

  59. Ito S, Sugiyama T, Toitani N, Katayama G, Miyasaka H. Application of fluorescence correlation spectroscopy to the measurement of local temperature in solutions under optical trapping condition. J Phys Chem B. 2007;111:2365–71.

    CAS  PubMed  Google Scholar 

  60. Volpe G, Quidant R, Badenes G, Petrov D. Surface plasmon radiation forces. Phys Rev Lett. 2006;96:238101.

    PubMed  Google Scholar 

  61. Galloway CM, Kreuzer MP, Aćimović SS, Volpe G, Correia M, Petersen SB, et al. Plasmon-assisted delivery of single nano-objects in an optical hot spot. Nano Lett. 2013;13:4299–304.

    CAS  PubMed  Google Scholar 

  62. Shoji T, Tsuboi Y. Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping. J Phys Chem Lett. 2014;5:2957–67.

    CAS  PubMed  Google Scholar 

  63. Shoji T, Tsuboi Y. Plasmonic optical trapping of soft nanomaterials such as polymer chains and DNA: micro-patterning formation. Opt Rev. 2015;22:137–42.

    CAS  Google Scholar 

  64. Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: a review. J Nanophotonics. 2008;2:021875.

    Google Scholar 

  65. Wu J, Gan X. Three dimensional nanoparticle trapping enhanced by surface plasmon resonance. Opt Exp. 2010;18:27619–26.

    CAS  Google Scholar 

  66. Tsuboi Y, Shoji T, Kitamura N, Takase M, Murakoshi K, Mizumoto Y, et al. Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon. J Phys Chem Lett. 2010;1:2327–33.

    CAS  Google Scholar 

  67. Shoji T, Shibata M, Kitamura N, Nagasawa F, Takase M, Murakoshi K, et al. Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure. J Phys Chem C. 2013;117:2500–6.

    CAS  Google Scholar 

  68. Shoji T, Mizumoto Y, Ishihara H, Kitamura N, Takase M, Murakoshi K, et al. Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect. Jpn J Appl Phys. 2012;51:092001.

    Google Scholar 

  69. Mototsuji A, Shoji T, Wakisaka Y, Murakoshi K, Yao H, Tsuboi Y. Plasmonic optical trapping of nanometer-sized J- /H- dye aggregates as explored by fluorescence microspectroscopy. Opt Exp. 2017;25:13617.

    CAS  Google Scholar 

  70. Shoji T, Saitoh J, Kitamura N, Nagasawa F, Murakoshi K, Yamauchi H, et al. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light. J Am Chem Soc. 2013;135:6643–8.

    CAS  PubMed  Google Scholar 

  71. Shoji T, Itoh K, Saitoh J, Kitamura N, Yoshii T, Murakoshi K, et al. Plasmonic Manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution. Sci Rep. 2020;10:3349.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Toshimitsu M, Matsumura Y, Shoji T, Kitamura N, Takase M, Murakoshi K, et al. Metallic-nanostructure-enhanced optical trapping of flexible polymer chains in aqueous solution as revealed by confocal fluorescence microspectroscopy. J Phys Chem C. 2012;116:14610–8.

    CAS  Google Scholar 

  73. McNay G, Eustace D, Smith WE, Faulds K, Graham D. Surface-enhanced raman scattering (SERS) and surface-enhanced resonance raman scattering (SERRS): a review of applications. Appl Spectrosc. 2011;65:825–37.

    CAS  PubMed  Google Scholar 

  74. Vo-Dinh T, Wang H-N, Scaffidi J. Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics. 2010;3:89–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Alvarez-Puebla RA, Liz-Marzán LM. Traps and cages for universal SERS detection. Chem Soc Rev. 2012;41:43–51.

    CAS  PubMed  Google Scholar 

  76. Yuan Y, Lin Y, Gu B, Panwar N, Tjin SC, Song J, et al. Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives. Coord Chem Rev. 2017;339:138–52.

    CAS  Google Scholar 

  77. Schlücker S. Surface-enhanced raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53:4756–95.

    Google Scholar 

  78. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta. 2008;620:8–26.

    CAS  PubMed  Google Scholar 

  79. Peng HI, Miller BL. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles. Analyst. 2011;136:436–47.

    CAS  PubMed  Google Scholar 

  80. Ueno K, Misawa H. Surface plasmon-enhanced photochemical reactions. J Photochem Photobiol C. 2013;15:31–52.

    CAS  Google Scholar 

  81. Ueno K, Juodkazis S, Shibuya T, Yokota Y, Mizeikis V, Sasaki K, et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J Am Chem Soc. 2008;130:6928–9.

    CAS  PubMed  Google Scholar 

  82. Brus L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc Chem Res. 2008;41:1742–9.

    CAS  PubMed  Google Scholar 

  83. Ueno K, Misawa H. Photochemical reaction fields with strong coupling between a photon and a molecule. J Photochem Photobiol A. 2011;221:130–7.

    CAS  Google Scholar 

  84. Baffou G, Quidant R. Nanoplasmonics for chemistry. Chem Soc Rev. 2014;43:3898–907.

    CAS  PubMed  Google Scholar 

  85. Nagasawa F, Takase M, Murakoshi K. Raman enhancement via polariton states produced by strong coupling between a localized surface plasmon and dye excitons at metal nanogaps. J Phys Chem Lett. 2014;5:14–9.

    CAS  PubMed  Google Scholar 

  86. Li X, Minamimoto H, Murakoshi K. Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018;197:244–50.

    CAS  Google Scholar 

  87. Takase M, Nabika H, Hoshina S, Nara M, Komeda K-I, Shito R, et al. Local thermal elevation probing of metal nanostructures during laser illumination utilizing surface-enhanced Raman scattering from a single-walled carbon nanotube. Phys Chem Chem Phys. 2013;15:4270–4.

    CAS  PubMed  Google Scholar 

  88. Takase M, Ajiki H, Mizumoto Y, Komeda K, Nara M, Nabika H, et al. Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. Nat Photonics. 2013;7:550–4.

    CAS  Google Scholar 

  89. Sawai Y, Takimoto B, Nabika H, Ajito K, Murakoshi K. Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering. J Am Chem Soc. 2007;129:1658–62.

    CAS  PubMed  Google Scholar 

  90. Gailevičius D, Ryu M, Honda R, Lundgaard S, Suzuki T, Maksimovic J, et al. Tilted black-Si: 045 form-birefringence from sub-wavelength needles. Opt Express. 2020;28:16012.

    PubMed  Google Scholar 

  91. Nishijima Y, Komatsu R, Ota S, Seniutinas G, Balčytis A, Juodkazis S. Anti-reflective surfaces: cascading nano/microstructuring. APL Photonics. 2016;1:076104.

    Google Scholar 

  92. Linklater DP, Haydous F, Xi C, Pergolesi D, Hu J, Ivanova EP, et al. Black-Si as a photoelectrode. Nanomaterials. 2020;10:873.

    CAS  PubMed Central  Google Scholar 

  93. Liu X, Coxon PR, Peters M, Hoex B, Cole JM, Fray DJ. Black silicon: fabrication methods, properties and solar energy applications. Energy Environ Sci. 2014;7:3223–63.

    CAS  Google Scholar 

  94. Savin H, Repo P, von Gastrow G, Ortega P, Calle E, Garín M, et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol. 2015;10:624–8.

    CAS  PubMed  Google Scholar 

  95. Oh J, Yuan H-C, Branz HM. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol. 2012;7:743–8.

    CAS  PubMed  Google Scholar 

  96. Xu Z, Song W, Crozier KB. Optical trapping of nanoparticles using all-silicon nanoantennas. ACS Photonics. 2018;5:4993–5001.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions from our collaborators. The authors are grateful for financial support from the Sumitomo Electric Industry Group Foundation and the CANON Foundation.

Funding

This work was partly supported by JSPS KAKENHI Grant Numbers JP17K04974, JP18K14254, and JP16H06507 in Scientific Research on Innovative Areas “Nano-Material Manipulation and Structural Order Control with Optical Forces” and “Molecular Engine” (JP19H05402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Shoji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shoji, T., Tsuboi, Y. Nanostructure-assisted optical tweezers for microspectroscopic polymer analysis. Polym J 53, 271–281 (2021). https://doi.org/10.1038/s41428-020-00410-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00410-w

Search

Quick links