Thermoresponsive CO2 absorbent for various CO2 concentrations: tuning the pKa of ammonium ions for effective carbon capture


Amine absorbents that efficiently absorb and desorb CO2 in response to small temperature changes are desired for CO2 separation from concentrated and dilute gases. Thermoresponsive hydrogel films consisting of amine-containing microgel particles (GPs), which capture CO2 at a low temperature (30 °C) and desorb it upon mild heating (75 °C), are attractive for capturing CO2 from postcombustion gases containing 10% CO2 (10 kPa). However, little information has been reported about thermoresponsive GPs for CO2 separation from gas mixtures with low concentrations of CO2. Herein, we describe the effect of the pKa of ammonium ions in GPs on the amount of CO2 desorption upon heating at 75 °C, which was investigated at various CO2 concentrations. The efficiency of CO2 desorption (mol-desorbed CO2/mol-amine) depends on the pKa and pKa shift (ΔpKa) of the ammonium ions in the range of 30‒75 °C. Computational predictions also indicated that the pKa values and ΔpKa are both important for reversible CO2 absorption. A guideline for designing thermoresponsive amine absorbents for various applications including direct air capture and carbon recycling in closed spaces, such as space stations and submarines, is provided.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci. 2018;11:1062–176.

    CAS  Article  Google Scholar 

  2. 2.

    Vega F, Baena-Moreno FM, Fernández LMG, Portillo E, Navarrete B, Zhang ZE. Current status of CO2 chemical absorption research applied to CCS: towards full deployment at industrial scale. Appl Energy. 2020;260:114313.

    CAS  Article  Google Scholar 

  3. 3.

    Wang M, Joel AS, Ramshaw C, Eimer D, Musa NM. Process intensification for post-combustion CO2 capture with chemical absorption a critical review. Appl Energy. 2015;158:275–91.

    CAS  Article  Google Scholar 

  4. 4.

    Wang. M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des. 2011;89:1609–24.

    CAS  Article  Google Scholar 

  5. 5.

    Leeson D, Fennell P, Shah N, Petit C, Mac Dowell N. A techno‐economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries. Int J Greenh Gas Control. 2017;61:71–84.

    CAS  Article  Google Scholar 

  6. 6.

    Rochelle GT. Amine scrubbing for CO2 capture. Science. 2009;325:1652–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Du Y, Yuan Y, Rochelle GT. Capacity and absorption rate of tertiary amine and hindered amines blended with piperazine for CO2 capture. Chem Eng Sci. 2016;155:397–404.

    CAS  Article  Google Scholar 

  8. 8.

    Gao H, Wu Z, Liu H, Luo X, Liang Z. Experimental studies on the effect of tertiary amine promoters in aqueous monoethanolamine (MEA) solutions on the absorption/stripping performances in post-combustion CO2 capture. Energy Fuels. 2017;31:13883.

    CAS  Article  Google Scholar 

  9. 9.

    Bernhardsen IM, Krokvik IRT, Perinu C, Pinto DDD, Jens KJ, Knuutila HK. Influence of pKa on solvent performance of MAPA promoted tertiary amines. Int J Greenh Gas Control. 2018;68:68–76.

    CAS  Article  Google Scholar 

  10. 10.

    Hwang SJ, Lee M, Kim H, Lee KS. Cyclic CO2 absorption capacity of aqueous single and blended amine solvents. J Ind Eng Chem. 2018;65:95–103.

    CAS  Article  Google Scholar 

  11. 11.

    Lin P-H, Wong DSH. Carbon dioxide capture and regeneration with amine/alcohol/water blends. Int J Greenh Gas Control. 2014;26:69–75.

    CAS  Article  Google Scholar 

  12. 12.

    Novek E, Shaulsky E, Fishman Z, Pfefferle L, Elimelech M. Low-temperature carbon capture using aqueous ammonia and organic solvents. Environ Sci Technol Lett. 2016;3:291–6.

    CAS  Article  Google Scholar 

  13. 13.

    Lai QH, Kong LL, Gong WB, Russell AG, Fan M. Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution. Appl Energy. 2019;254:113696.

    CAS  Article  Google Scholar 

  14. 14.

    Park Y, Lin KYA, Park AHA, Petit C. Recent advances in anhydrous solvents for CO2 capture: ionic liquids, switchable solvents, and nanoparticle organic hybrid materials. Front Energy Res. 2015;3:42.

    Article  Google Scholar 

  15. 15.

    Liu F, Jing G, Zhou X, Lv B, Zhou Z. Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and non-aqueous solutions for CO2 capture. ACS Sustain Chem Eng. 2018;6:1352–61.

    Article  CAS  Google Scholar 

  16. 16.

    Yu. YS, Lu HF, Zhang TT, Zhang ZX, Wang GX, Rudolph V. Determining the performance of an efficient non-aqueous CO2 capture process at desorption temperature below 373 K. Ind Eng Chem Res. 2013;52:12622–34.

    CAS  Article  Google Scholar 

  17. 17.

    Zhang X, Liu H, Liang Z, Idem R, Tontiwachwuthikul P, Jaber Al-Marri M, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts. Appl Energy. 2018;229:562–76.

    CAS  Article  Google Scholar 

  18. 18.

    Zhang X, Huang Y, Gao H, Luo X, Liang Z, Tontiwachwuthikul P. Zeolite catalyst-aided tri-solvent blend amine regeneration: an alternative pathway to reduce the energy consumption in amine-based CO2 capture process. Appl Energy. 2019;240:827–41.

    CAS  Article  Google Scholar 

  19. 19.

    Zhang X, Huang Y, Yang J, Gao H, Huang Y, Luo X, et al. Amine-based CO2 capture aided by acid-basic bifunctional catalyst: advancement of amine regeneration using metal modified MCM-41. Chem Eng J. 2020;383:123077.

    CAS  Article  Google Scholar 

  20. 20.

    Qi G, Fu L, Giannelis EP. Sponges with covalently tethered amines for high-efficiency carbon capture. Nat Commun. 2014;5:5796.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Heydari-gorji A, Yang Y, Sayari A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas. Energy Fuels. 2011;25:4206–10.

    CAS  Article  Google Scholar 

  22. 22.

    Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind Eng Chem Res. 2013;52:8323–31.

    CAS  Article  Google Scholar 

  23. 23.

    Xiao M, Liu H, Idem R, Tontiwachwuthikul P, Liang Z. A study of structure-activity relationships of commercial tertiary amines for post-combustion CO2 capture. Appl Energy. 2016;184:219–29.

    CAS  Article  Google Scholar 

  24. 24.

    Singto S, Supap T, Idem R, Tontiwachwuthikul P, Tantayanon S, Al-Marri MJ, et al. Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: the effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep Purif Technol. 2016;167:97–107.

    CAS  Article  Google Scholar 

  25. 25.

    Narimani M, Amjad-Iranagh S, Modarress H. Performance of tertiary amines as the absorbents for CO2 capture: quantum mechanics and molecular dynamics. Stud J Nat Gas Sci Eng. 2017;47:154–66.

    CAS  Article  Google Scholar 

  26. 26.

    Numaguchi R, Fujiki J, Yamada H, Firoz, Chowdhury A, Kida K, et al. Development of post-combustion CO2 capture system using amine-impregnated solid sorbent. Energy Procedia. 2017;114:2304–12.

    CAS  Article  Google Scholar 

  27. 27.

    Yamada H, Chowdhury FA, Fujiki J, Yogo K. Enhancement mechanism of the CO2 adsorption–desorption efficiency of silica-supported tetraethylenepentamine by chemical modification of amino groups. ACS Sustain Chem Eng. 2019;7:9574–81.

    CAS  Article  Google Scholar 

  28. 28.

    Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc. 2012;134:18177–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Yue M, Hoshino Y, Ohshiro Y, Imamura K, Miura Y. Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem Int Ed. 2014;53:2654–7.

    CAS  Article  Google Scholar 

  30. 30.

    Gao J, Liu Y, Hoshino Y, Inoue G. Amine-containing nanogel particles supported on porous carriers for enhanced carbon dioxide capture. Appl Energy. 2019;253:113567.

    CAS  Article  Google Scholar 

  31. 31.

    Yue M, Hoshino Y, Miura Y. Design rationale of thermally responsive microgel particle films that reversibly absorb large amounts of CO2: fine tuning the pKa of ammonium ions in the particles. Chem Sci. 2015;6:6112–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Hoshino Y, Ohashi RC, Miura Y. Rational design of synthetic nanoparticles with a large reversible shift of acid dissociation constants: proton imprinting in stimuli responsive nanogel particles. Adv Mater. 2014;26:3718–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Hoshino Y, Miyoshi T, Nakamoto M, Miura Y. Wide-Range pKa tuning of proton imprinted nanoparticles for reversible protonation of target molecules via thermal stimuli. J Mater Chem B. 2017;5:9204–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Socolow R, Desmond M, Aines R, Blackstock J, Bolland O, Kaarsberg T, et al. Direct air capture of CO2 with chemicals: a technology assessment for the APS Panel on Public Affairs. Am Phys Soc. 2011.

  35. 35.

    Kiani A, Jiang K, Feron P. Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process. Front Energy Res. 2020;8:92.

    Article  Google Scholar 

  36. 36.

    Sanz-Perez ES, Murdock CR, Didas SA, Jones CW. Direct capture of CO2 from ambient air. Chem Rev. 2016;116:11840–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Satyapal S, Filburn T, Trela J, Strange J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels. 2001;15:250–5.

    CAS  Article  Google Scholar 

  38. 38.

    Zhao C, Guo Y, Li C, Lu S. Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents. Appl Energy. 2014;124:241–7.

    CAS  Article  Google Scholar 

  39. 39.

    Huang Z, Chen ZB, Ren NQ, Hu DX, Zheng DH, Zhang ZP. A novel application of the SAWD-Sabatier-SPE integrated system for CO2 removal and O2 regeneration in submarine cabins during prolonged voyages. J Zhejiang Univ Sci A. 2009;10:1642–50.

    CAS  Article  Google Scholar 

  40. 40.

    Field CB, Mach KJ. Rightsizing carbon dioxide removal. Science. 2017;356:706–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Gabrielsen J, Michelsen ML, Stenby EH, Kontogeoegis GM. A model for estimating CO2 solubility in aqueous alkanolamines. Ind Eng Chem Res. 2005;44:3348–54.

    CAS  Article  Google Scholar 

  42. 42.

    McCann N, Maeder M, Attalla M. Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Ind Eng Chem Res. 2008;47:2002–9.

    CAS  Article  Google Scholar 

  43. 43.

    Didas SA, Kulkarni AR, Sholl DS, Jones CW. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air. ChemSusChem. 2012;5:2058–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Aronu UE, Gondal S, Hessen ET, Haug-Warberg T, Hartono A, Hoff KA, et al. Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120 °C and model representation using the extended UNIQUAC framework. Chem Eng Sci. 2011;66:6393–406.

    CAS  Article  Google Scholar 

  45. 45.

    Hwang SJ, Kim J, Kim H, Lee KS. Solubility of carbon dioxide in aqueous solutions of three secondary amines: 2-(Butylamino)Ethanol, 2-(Isopropylamino)Ethanol, and 2-(Ethylamino)Ethanol secondary alkanolamine solutions. J Chem Eng Data. 2017;62:2428–35.

    CAS  Article  Google Scholar 

  46. 46.

    Liu H, Chan C, Tontiwachwuthikul P, Idem R. Analysis of CO2 equilibrium solubility of seven tertiary amine solvents using thermodynamic and ANN models. Fuel. 2019;249:61–72.

    CAS  Article  Google Scholar 

  47. 47.

    Donaldson TL, Nguyen YN. Carbon dioxide reaction kinetics and transport in aqueous amine membranes Ind. Eng Chem Fundam. 1980;19:260–6.

    CAS  Article  Google Scholar 

  48. 48.

    Carroll JJ, Slupsky JD, Mather AE. The solubility of carbon dioxide in water at low pressure. J Phys Chem Ref Data. 1991;20:1201–9.

    CAS  Article  Google Scholar 

  49. 49.

    Marshall WL, Franck EU. Ion product of water substance, 0–1,000°C, 1–10,000 bars new international formulation and its background. J Phys Chem Ref Data. 1981;10:295–304.

    CAS  Article  Google Scholar 

  50. 50.

    Plummer LN, Busenberg E. The solubilities of calcite, aragonite, and vaterite in CO2-H2O solutions between 0 °C and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim Cosmochim Acta. 1982;46:1011–40.

    CAS  Article  Google Scholar 

  51. 51.

    Katchalsky A, Spitnik P. Potentiometric titrations of polymethacrylic acid. J Polym Sci. 1947;2:432–46.

    CAS  Article  Google Scholar 

  52. 52.

    Kleinen J, Richtering W. Polyelectrolyte microgels based on Poly-N-isopropylacrylamide: influence of charge density on microgel properties, binding of poly-diallyldimethylammonium chloride, and properties of polyelectrolyte complexes. Colloid Polym Sci. 2011;289:739–49.

    CAS  Article  Google Scholar 

Download references


This research was supported by JSPS KAKENHI Grant Number JP15H05486, Japan; MEXT Innovative Areas of “Fusion Materials”, Grant Number 25107726, Japan; and JST-ALCA Grant Number JPMJAL1403, Japan and Japan Association for Chemical Innovation.

Author information



Corresponding author

Correspondence to Yu Hoshino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Honda, R., Hamasaki, A., Miura, Y. et al. Thermoresponsive CO2 absorbent for various CO2 concentrations: tuning the pKa of ammonium ions for effective carbon capture. Polym J (2020).

Download citation