Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temperature-dependent relationship between the structure and mechanical strength of volatile organic compound-free latex films prepared from poly(butyl acrylate-co-methyl methacrylate) microspheres

Abstract

Latex films that are formed by evaporating dispersions in the absence of volatile organic compounds (VOCs) typically suffer from poor mechanical strength compared to solution-cast latex films. In our previous work, we discovered that this disadvantage can be overcome by using microspheres crosslinked with rotaxanes, which consist of a crown ether wheel and an axle. In the present study, to obtain tougher latex films, we investigated the relationship between the mechanical properties and the nanostructures of films prepared at different film-formation temperatures (FFT), i.e., FFTs above and below the glass-transition temperatures (Tg) of the microspheres. Tensile tests revealed that the films showed the highest fracture energies when the film was formed at a temperature higher than the Tg of the microspheres and followed by annealing. In addition, the interfacial thickness (tinter), which is an indicator of the magnitude of the relationship between the tinter of neighboring microspheres, was correlated with the fracture energy as a function of annealing time. Thus, tough latex films could be obtained without the use of any additives by increasing the FFT during the formation and subsequent annealing of the film. This study may lead to new applications, e.g., VOC-free coatings for biomaterials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Routh AF. Drying of thin colloidal films. Rep Prog Phys. 2013;76:046603.

    Article  Google Scholar 

  2. 2.

    Schulz M, Keddie JL. A critical and quantitative review of the stratification of particles during the drying of colloidal films. Soft Matter. 2018;14:6181–97.

    CAS  Article  Google Scholar 

  3. 3.

    Jiang S, Van Dyk A, Maurice A, Bohling J, Fasano D, Brownell S. Design colloidal particle morphology and self-assembly for coating applications. Chem Soc Rev. 2017;46:3792–807.

    CAS  Article  Google Scholar 

  4. 4.

    Limousin E, Ballard N, Asua JM. Soft core–hard shell latex particles for mechanically strong VOC-free polymer films. J Appl Polym Sci. 2019;136:47608.

    Article  Google Scholar 

  5. 5.

    Lambourne R, Strivens TA. Paint and surface coatings. Woodhead Publishing Ltd, Cambridge; 1999.

  6. 6.

    Liu M, Mao X, Zhu H, Lin A, Wang D. Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: effects of resin molecular weight, polar group and hydrophobic segment. Corros Sci. 2013;75:106–13.

    CAS  Article  Google Scholar 

  7. 7.

    Gurney RS, Dupin D, Nunes JS, Ouzineb K, Siband E, Asua JM, et al. Switching off the tackiness of a nanocomposite adhesive in 30 s via infrared sintering. ACS Appl Mater Interfaces. 2012;4:5442–52.

    CAS  Article  Google Scholar 

  8. 8.

    Calvo ME, Míguez H. Flexible, adhesive, and biocompatible bragg mirrors based on polydimethylsiloxane infiltrated nanoparticle multilayers. Chem Mater. 2010;22:3909–15.

    CAS  Article  Google Scholar 

  9. 9.

    Sababi M, Kettle J, Rautkoski H, Claesson PM, Thormann E. Structural and nanomechanical properties of paperboard coatings studied by peak force tapping atomic force microscopy. ACS Appl Mater Interfaces. 2012;4:5534–41.

    CAS  Article  Google Scholar 

  10. 10.

    Lee J-H, Lee HL. Characterization of the paper coating structure using focused ion beam and field-emission scanning electron microscopy. 2. Structural variation depending on the glass transition temperature of an S/B latex. Ind Eng Chem Res. 2018;57:16718–26.

    CAS  Article  Google Scholar 

  11. 11.

    Viel B, Ruhl T, Hellmann GP. Reversible deformation of opal elastomers. Chem Mater. 2007;19:5673–9.

    CAS  Article  Google Scholar 

  12. 12.

    Schäfer CG, Smolin DA, Hellmann GP, Gallei M. Fully reversible shape transition of soft spheres in elastomeric polymer opal films. Langmuir. 2013;29:11275–83.

    Article  Google Scholar 

  13. 13.

    Ito T, Katsura C, Sugimoto H, Nakanishi E, Inomata K. Strain-responsive structural colored elastomers by fixing colloidal crystal assembly. Langmuir. 2013;29:13951–7.

    CAS  Article  Google Scholar 

  14. 14.

    Kureha T, Hiroshige S, Matsui S, Suzuki D. Water-immiscible bioinert coatings and film formation from aqueous dispersions of poly(2-methoxyethyl acrylate) microspheres. Colloids Surf B. 2017;155:166–72.

    CAS  Article  Google Scholar 

  15. 15.

    Marchetti P, Mechelhoff M, Livingston AG. Tunable-porosity membranes from discrete nanoparticles. Sci Rep. 2015;5:17353.

    Article  Google Scholar 

  16. 16.

    Horigome K, Suzuki D. Drying mechanism of poly(N-isopropylacrylamide) microgel dispersions. Langmuir. 2012;28:12962–70.

    CAS  Article  Google Scholar 

  17. 17.

    Suzuki D, Horigome K. Assembly of oppositely charged microgels at the air/water interface. J Phys Chem B. 2013;117:9073–82.

    CAS  Article  Google Scholar 

  18. 18.

    Takizawa M, Sazuka Y, Horigome K, Sakurai Y, Matsui S, Minato H, et al. Self-organization of soft hydrogel microspheres during the evaporation of aqueous droplets. Langmuir. 2018;34:4515–25.

    CAS  Article  Google Scholar 

  19. 19.

    Minato H, Takizawa M, Hiroshige S, Suzuki D. Effect of charge groups immobilized in hydrogel microspheres during the evaporation of aqueous sessile droplets. Langmuir. 2019;35:10412–23.

    CAS  Article  Google Scholar 

  20. 20.

    Taylor JW, Winnik MA. Functional latex and thermoset latex films. J Coat Technol Res. 2004;1:163–90.

    CAS  Article  Google Scholar 

  21. 21.

    Lohmeijer B, Balk R, Baumstark R. Preferred partitioning: the influence of coalescents on the build-up of mechanical properties in acrylic core–shell particles (I). J Coat Technol Res. 2012;9:399–409.

    CAS  Article  Google Scholar 

  22. 22.

    Gauthier C, Sindt O, Vigier G, Guyot A, Schoonbrood HAS, Unzue M, et al. Reactive surfactants in heterophase polymerization. XVII. Influence of the surfactant on the mechanical properties and hydration of the films. J Appl Polym Sci. 2002;84:1686–700.

    CAS  Article  Google Scholar 

  23. 23.

    Asua JM, Schoonbrood HAS. Reactive surfactants in heterophase polymerization. Acta Polym. 1998;49:671–86.

    CAS  Article  Google Scholar 

  24. 24.

    Aramendia E, Mallégol J, Jeynes C, Barandiaran MJ, Keddie JL, Asua JM. Distribution of surfactants near acrylic latex film surfaces: a comparison of conventional and reactive surfactants (surfmers). Langmuir. 2003;19:3212–21.

    CAS  Article  Google Scholar 

  25. 25.

    Eckersley ST, Helmer BJ. Mechanistic considerations of particle size effects on film properties of hard/soft latex blends. J Coat Technol. 1997;69:97–107.

    CAS  Article  Google Scholar 

  26. 26.

    Tzitzinou A, Keddie JL, Geurts JM, Peters ACIA, Satguru R. Film formation of latex blends with bimodal particle size distributions: consideration of particle deformability and continuity of the dispersed phase. Macromolecules. 2000;33:2695–708.

    CAS  Article  Google Scholar 

  27. 27.

    Geurts J, Bouman J, Overbeek A. New waterborne acrylic binders for zero VOC paints. J Coat Technol Res. 2008;5:57–63.

    CAS  Article  Google Scholar 

  28. 28.

    Liu Y, Schroeder W, Soleimani M, Lau W, Winnik MA. Effect of hyperbranched poly(butyl methacrylate) on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films. Macromolecules. 2010;43:6438–49.

    CAS  Article  Google Scholar 

  29. 29.

    Zohrehvand S, te Nijenhuis K. Film formation from monodisperse acrylic latices, part 4: the role of coalescing agents in the film formation process. Colloid Polym Sci. 2005;283:1305–12.

    CAS  Article  Google Scholar 

  30. 30.

    Divry V, Gromer A, Nassar M, Lambour C, Collin D, Holl Y. Drying mechanisms in plasticized latex films: role of horizontal drying fronts. J Phys Chem B. 2016;120:6791–802.

    CAS  Article  Google Scholar 

  31. 31.

    Hiroshige S, Kureha T, Aoki D, Sawada J, Aoki D, Takata T, et al. Formation of tough films by evaporation of water from dispersions of elastomer microspheres crosslinked with rotaxane supramolecules. Chem Eur J. 2017;23:8405–8.

    CAS  Article  Google Scholar 

  32. 32.

    Hiroshige S, Sawada J, Aoki D, Takata T, Suzuki D. Investigation of mechanical properties of latex Films prepared from poly (butyl acrylate-co-methyl methacrylate) microspheres crosslinked with rotaxane. J Soc Rheol Jpn. 2019;47:051–4.

    CAS  Article  Google Scholar 

  33. 33.

    Kureha T, Hiroshige S, Suzuki D, Sawada J, Aoki D, Takata T, et al. Quantification for the mixing of polymers on microspheres in waterborne latex films. Langmuir. 2020;36:4855–62.

    CAS  Article  Google Scholar 

  34. 34.

    Antonietti M, Landfester K. Polyreactions in miniemulsions. Prog Polym Sci. 2002;27:689–757.

    CAS  Article  Google Scholar 

  35. 35.

    Zosel A, Ley G. Influence of cross-linking on structure, mechanical properties, and strength of latex films. Macromolecules. 1993;26:2222–7.

    CAS  Article  Google Scholar 

  36. 36.

    Honda K, Sazuka Y, Iizuka K, Matsui S, Uchihashi T, Kureha T, et al. Hydrogel microellipsoids that form robust string-like assemblies at the air/water interface. Angew Chem Int Ed. 2019;58:7294–8.

    CAS  Article  Google Scholar 

  37. 37.

    Matsui S, Kureha T, Hiroshige S, Shibata M, Uchihashi T, Suzuki D. Fast adsorption of soft hydrogel microspheres on solid surfaces in aqueous solution. Angew Chem Int Ed. 2017;56:12146–9.

    CAS  Article  Google Scholar 

  38. 38.

    van der Kooij HM, de Kool M, van der Gucht, Sprakel J. Coalescence, cracking, and crack healing in drying dispersion droplets. Langmuir. 2015;31:4419–28.

    Article  Google Scholar 

Download references

Acknowledgements

DS and TT acknowledge the Grants-in-Aid for Scientific Research on Innovative Areas (DS: JP26102517 and JP16H00760; TT: JP26102512 and JP16H00754) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT), and CREST, the Japan Science and Technology Agency (TT: JPMJCR1522), Japan. SH acknowledges a fellowship (18J21706) from the Japan Society for the Promotion of Science (JSPS).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Toshikazu Takata or Daisuke Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiroshige, S., Minato, H., Nishizawa, Y. et al. Temperature-dependent relationship between the structure and mechanical strength of volatile organic compound-free latex films prepared from poly(butyl acrylate-co-methyl methacrylate) microspheres. Polym J 53, 345–353 (2021). https://doi.org/10.1038/s41428-020-00406-6

Download citation

Search

Quick links