Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amine-based capture of CO2 for utilization and storage


Carbon dioxide capture and storage (CCS) technology is an effective CO2 fixation technology, as documented by the special report produced by Working Group III of the Intergovernmental Panel on Climate Change. Today, this technology has become important due to the threat of global warming and climate change. Furthermore, the development of carbon dioxide capture and utilization (CCU) technology, which reuses the captured CO2, has been prioritized in recent years to accelerate the deployment of “CCUS.” For both utilization and storage, CO2 capture is a key process that determines how efficiently decarbonation is able to meet the global target. Regardless of the maturity of various types of CO2 capture technologies, amines are the most widely used chemical species. This paper contains a brief overview of CCUS followed by a discussion of several aspects of amine-based CO2 capture technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Kiehl JT, Trenberth KE. Earth’s annual global mean energy budget. Bull Am Meteorol Soc. 1997;78:197–208.

    Google Scholar 

  2. 2.

    Karl TR, Trenberth KE. Modern global climate change. Science. 2003;302:1719–23.

    CAS  PubMed  Google Scholar 

  3. 3.

    McCarty JP. Ecological consequences of recent climate change. Biol Conserv. 2001;15:320–31.

    Google Scholar 

  4. 4.

    Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke Jr. RA, et al. Abrupt climate change. Science. 2003;299:2005–10.

    CAS  PubMed  Google Scholar 

  5. 5.

    Arrhenius S. On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag J Sci. 1896;41:237–76.

    CAS  Google Scholar 

  6. 6.

    Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, et al. editors. Global warming of 1.5 °C. IPCC. 2018.

  7. 7.

    Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature. 2016;534:631–9.

    CAS  PubMed  Google Scholar 

  8. 8.

    International Energy Agency. Energy technology perspectives 2017. Paris: OECD/IEA; 2017.

  9. 9.

    Yu KM, Curcic I, Gabriel J, Tsang SC. Recent advances in CO2 capture and utilization. ChemSusChem. 2008;1:893–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci. 2012;5:7281–305.

    CAS  Google Scholar 

  11. 11.

    Naims H. Economics of carbon dioxide capture and utilization – a supply and demand perspective. Environ Sci Pollut Res. 2016;23:22226–41.

    CAS  Google Scholar 

  12. 12.

    Ho H-J, Iizuka A, Shibata E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies. Ind Eng Chem Res. 2019;58:8941–54.

    CAS  Google Scholar 

  13. 13.

    Aresta M, Dibenedetto A, Angelini A. The changing paradigm in CO2 utilization. J CO2 Util. 2013;3–4:65–73.

    Google Scholar 

  14. 14.

    Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S. The technological and economic prospects for CO2 utilization and removal. Nature. 2019;575:87–97.

    CAS  PubMed  Google Scholar 

  15. 15.

    Marchetti C. On geoengineering and the CO2 problem. Clim Change. 1977;1:59–68.

    CAS  Google Scholar 

  16. 16.

    Metz B, Davidson OR, De Coninck H, Loos M, Meyer LA, editors. IPCC special report: carbon dioxide capture and storage. Cambridge: Cambridge Univ. Press; 2005.

  17. 17.

    Kheshgi H, de Coninck H, Kessels J. Carbon dioxide capture and storage: seven years after the IPCC special report. Mitig Adapt Strateg Glob Change. 2012;17:563–7.

    Google Scholar 

  18. 18.

    Scott V, Gilfillan S, Markusson N, Chalmers H, Haszeldine RS. Last chance for carbon capture and storage. Nat Clim Change. 2013;3:105–11.

    CAS  Google Scholar 

  19. 19.

    Seigo SL, Dohle S, Siegrist M. Public perception of carbon capture and storage (CCS): a review. Renew Sust Energ Rev. 2014;38:848–63.

    Google Scholar 

  20. 20.

    de Coninck H, Benson SM. Carbon dioxide capture and storage: issues and prospects. Annu Rev Environ Resour. 2014;39:243–70.

    Google Scholar 

  21. 21.

    Tan Y, Nookuea W, Li H, Thorin E, Yan J. Property impacts on carbon capture and storage (CCS) processes: a review. Energy Convers Manag. 2016;118:204–22.

    CAS  Google Scholar 

  22. 22.

    Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci. 2018;11:1062–176.

    CAS  Google Scholar 

  23. 23.

    Whitmarsh L, Xenias D, Jones CR. Framing effects on public support for carbon capture and storage. Palgrave Commun. 2019;5:17.

    Google Scholar 

  24. 24.

    Sgouridis S, Carbajales-Dale M, Csala D, Chiesa M, Bardi U. Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat Energy. 2019;4:456–65.

    CAS  Google Scholar 

  25. 25.

    Rubin ES, Davison JE, Herzog HJ. The cost of CO2 capture and storage. Int J Greenh Gas Control. 2015;40:378–400.

    CAS  Google Scholar 

  26. 26.

    Global status report 2019. Global CCS Institute. 2019.

  27. 27.


  28. 28.

    Dooley JJ, Davidson CL, Dahowski RT. An assessment of the commercial availability of carbon dioxide capture and storage technologies as of June 2009. PNNL 18520. Richland, WA: Pacific Northwest National Laboratory; 2009.

  29. 29.

    Liu H, Tellez BG, Atallah T, Barghouty M. The role of CO2 capture and storage in Saudi Arabia’s energy future. Int J Greenh Gas Control. 2012;11:163–71.

    Google Scholar 

  30. 30.

    Iglesias RS, Ketzer JM, Melo CL, Heemann R, Machado CX. Carbon capture and geological storage in Brazil: an overview. Greenh Gas Sci Technol. 2015;5:119–30.

    Google Scholar 

  31. 31.

    Ren B, Ren S, Zhang L, Chen G, Zhang H. Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China. Energy. 2016;98:108–21.

    CAS  Google Scholar 

  32. 32.

    20 Years of carbon capture and storage. International Energy Agency. 2016.

  33. 33.

    Roberts JJ, Gilfillan SMV, Stalker L, Naylor M. Geochemical tracers for monitoring offshore CO2 stores. Int J Greenh Gas Control. 2017;65:218–34.

    CAS  Google Scholar 

  34. 34.

    Rock L, O’Brien S, Tessarolo S, Duer J, Bacci VO, Hirst B, et al. The Quest CCS project: 1st year review post start of injection. Energy Procedia. 2017;114:5320–8.

    CAS  Google Scholar 

  35. 35.

    Mantripragada HC, Zhai H, Rubin ES. Boundary Dam or Petra Nova – which is a better model for CCS energy supply? Int J Greenh Gas Control. 2019;82:59–68.

    Google Scholar 

  36. 36.

    Arts R, Eiken O, Chadwick RA, Zweigel P, van der Meer L, Zinszner B. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy. 2004;29:1383–93.

    CAS  Google Scholar 

  37. 37.

    Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE. Improved attribution of climate forcing to emissions. Science. 2009;326:716–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol. 2002;36:4467–75.

    CAS  PubMed  Google Scholar 

  39. 39.

    Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des. 2011;89:1609–24.

    CAS  Google Scholar 

  40. 40.

    Feron PHM, Cousins A, Jiang K, Zhai R, Garcia M. An update of the benchmark post-combustion CO2-capture technology. Fuel. 2020;273:117776.

    CAS  Google Scholar 

  41. 41.

    Kolster C, Masnadi MS, Krevor S, Mac Dowell N, Brandt AR. CO2 enhanced oil recovery: a catalyst for gigatonne-scale carbon capture and storage deployment? Energy Environ Sci. 2017;10:2594–608.

    CAS  Google Scholar 

  42. 42.

    Mac Dowell N, Fennell PS, Shah N, Maitland GC. The role of CO2 capture and utilization in mitigating climate change. Nature. Clim Change. 2017;7:243–9.

    Google Scholar 

  43. 43.

    Mimura T, Shimojo S, Suda T, Iijima M, Mitsuoka. Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant. Energy Convers Manag. 1995;36:397–400.

    CAS  Google Scholar 

  44. 44.

    Gottlicher G, Pruschek R. Comparison of CO2 removal systems for fossil-fuelled power plant processes. Energy Convers Manag. 1997;38:S173–8.

    Google Scholar 

  45. 45.

    Mumford KA, Wu Y, Smith KH, Stevens GW. Review of solvent based carbon-dioxide capture technologies. Front Chem Sci Eng. 2015;9:125–41.

    CAS  Google Scholar 

  46. 46.

    Luis P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives. Desalination. 2016;380:93–9.

    CAS  Google Scholar 

  47. 47.

    Hochgesand G. Rectisol and purisol. Ind Eng Chem. 1970;62:37–43.

    CAS  Google Scholar 

  48. 48.

    Nakao S, Yogo K, Goto K, Kai T, Yamada H. Advanced CO2 capture technologies. Springer Briefs in Energy book series. 2019.

  49. 49.

    Rochelle GT. Amine scrubbing for CO2 capture. Science. 2009;325:1652–4.

    CAS  PubMed  Google Scholar 

  50. 50.

    Ünveren EE, Monkul BÖ, Sarıoğlan Ş, Karademir N, Alperb E. Solid amine sorbents for CO2 capture by chemical adsorption: a review. Petroleum. 2017;3:37–50.

    Google Scholar 

  51. 51.

    Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc. 2012;134:18177–80.

    CAS  PubMed  Google Scholar 

  52. 52.

    Tong Z, Ho WSW. Facilitated transport membranes for CO2 separation and capture. Sep Sci Technol. 2017;52:156–67.

    CAS  Google Scholar 

  53. 53.

    Yamada H. Comparison of solvation effects on CO2 capture with aqueous amine solutions and amine-functionalized ionic liquids. J Phys Chem B. 2016;120:10563–8.

    CAS  PubMed  Google Scholar 

  54. 54.

    Hall Jr HK. Correlation of the base strength of amines. J Am Chem Soc. 1957;79:5441–4.

    CAS  Google Scholar 

  55. 55.

    Vaidya PD, Kenig EY. CO2–alkanolamine reaction kinetics: a review of recent studies. Chem Eng Technol. 2007;30:1467–74.

    CAS  Google Scholar 

  56. 56.

    Yamada H, Shimizu S, Okabe H, Matsuzaki Y, Chowdhury FA, Fujioka Y. Prediction of the basicity of aqueous amine solutions and the species distribution in the amine−H2O−CO2 system using the COSMO-RS method. Ind End Chem Res. 2010;49:2449–55.

    CAS  Google Scholar 

  57. 57.

    Arstad B, Blom R, Swang O. CO2 absorption in aqueous solutions of alkanolamines: mechanistic insight from quantum chemical calculations. J Phys Chem A. 2007;111:1222–8.

    CAS  PubMed  Google Scholar 

  58. 58.

    Inagaki F, Matsumoto C, Iwata T, Mukai C. CO2-selective absorbents in air: reverse lipid bilayer structure forming neutral carbamic acid in water without hydration. J Am Chem Soc. 2017;139:4639–42.

    CAS  PubMed  Google Scholar 

  59. 59.

    Yamada H, Matsuzaki Y, Goto K. Quantitative spectroscopic study of equilibrium in CO2-loaded aqueous 2-(ethylamino)ethanol solutions. Ind Eng Chem Res. 2014;53:1617–23.

    CAS  Google Scholar 

  60. 60.

    da Silva EF, Svendsen HF. Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption. Int J Greenh Gas Control. 2007;1:151–7.

  61. 61.

    Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, et al. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol. 2009;43:6427–33.

    CAS  PubMed  Google Scholar 

  62. 62.

    Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind Eng Chem Res. 2013;52:8323–31.

    CAS  Google Scholar 

  63. 63.

    Zhao Y, Ho WSW. CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Ind Eng Chem Res. 2013;52:8774–82.

    CAS  Google Scholar 

  64. 64.

    Yamada H, Chowdhury FA, Fujiki J, Yogo K. Enhancement mechanism of the CO2 adsorption-desorption efficiency of silica-supported tetraethylenepentamine by chemical modification of amino groups. ACS Sustain Chem Eng. 2019;7:9574–81.

    CAS  Google Scholar 

  65. 65.

    Yamada H, Matsuzaki Y, Chowdhury FA, Higashii T. Computational investigation of carbon dioxide absorption in alkanolamine solutions. J Mol Model. 2013;19:4147–53.

    CAS  PubMed  Google Scholar 

  66. 66.

    Goto K, Okabe H, Chowdhury FA, Shimizu S, Fujioka Y, Onoda M. Development of novel absorbents for CO2 capture from blast furnace gas. Int J Greenh Gas Control. 2011;5:1214–9.

    CAS  Google Scholar 

  67. 67.

    Yamada H, Chowdhury FA, Goto K, Higashii T. CO2 solubility and species distribution in aqueous solutions of 2-(isopropylamino)ethanol and its structural isomers. Int J Greenh Gas Control. 2013;17:99–105.

    CAS  Google Scholar 

  68. 68.

    Yamada H, Fujiki J, Chowdhury FA, Yogo K. Effect of isopropyl-substituent introduction into tetraethylenepentamine-based solid sorbents for CO2 capture. Fuel. 2018;214:14–9.

    CAS  Google Scholar 

  69. 69.

    Zhao Y, Ho WSW. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport. J Membr Sci. 2012;415–416:132–8.

    Google Scholar 

  70. 70.

    Danckwerts PV. The reaction of CO2 with ethanolamines. Chem Eng Sci. 1979;34:443–6.

    CAS  Google Scholar 

  71. 71.

    Orestes E, Ronconi CM, Carneiro JWM. Insights into the interactions of CO2 with amines: a DFT benchmark study. Phys Chem Chem Phys. 2014;16:17213–9.

    CAS  PubMed  Google Scholar 

  72. 72.

    Xie H-B, Zhou Y, Zhang Y, Johnson JK. Reaction mechanism of monoethano-lamine with CO2 in aqueous solution from molecular modeling. J Phys Chem A. 2010;14:11844–52.

    Google Scholar 

  73. 73.

    Yamada H, Matsuzaki Y, Higashii T, Kazama S. Density functional theory study on carbon dioxide absorption into aqueous solu-tions of 2-amino-2-methyl-1-propanol using a continuum solvation model. J Phys Chem A. 2011;115:3079−86.

  74. 74.

    Perinu C, Arstad B, Jens K-J. NMR spectroscopy applied to amine–CO2–H2O systems relevant for post-combustion CO2 capture: a review. Int J Greenh Gas Control. 2014;20:230–43.

    CAS  Google Scholar 

  75. 75.

    Matsuzaki Y, Yamada H, Chowdhury FA, Yamamoto S, Goto K. Ab initio study of CO2 capture mechanisms in aqueous 2-amino-2-methyl-1-propanol: electronic and steric effects of methyl substituents on the stability of carbamate. Ind Eng Chem Res. 2019;58:3549–54.

    CAS  Google Scholar 

  76. 76.

    Knox K. Le Châtelier’s principle. J Chem Educ. 1985;62:863.

    Google Scholar 

  77. 77.

    Wang T, Xie H-B, Song Z, Niu J, Chen D-L, Xia D, et al. Role of hydrogen bond capacity of solvents in reactions of amines with CO2: a computational study. J Environ Sci. 2020;91:271–8.

    Google Scholar 

  78. 78.

    Hussain A, Hägg M-B. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J Membr Sci. 2010;359:140–8.

    CAS  Google Scholar 

  79. 79.

    Taniguchi I, Duan S, Kazama S, Fujioka Y. Facile fabrication of a novel high performance CO2 separation membrane: immobilization of poly(amidoamine) dendrimers in poly(ethylene glycol) networks. J Membr Sci. 2008;322:277–80.

    CAS  Google Scholar 

  80. 80.

    Adewole JK, Ahmad AL, Ismail S, Leo CP. Current challenges in membrane separation of CO2 from natural gas: a review. Int J Greenh Gas Control. 2013;17:46–65.

    CAS  Google Scholar 

  81. 81.

    Hasebe S, Aoyama S, Tanaka M, Kawakami H. CO2 separation of polymer membranes containing silica nanoparticles with gas permeable nano-space. J Membr Sci. 2017;536:148–55.

    CAS  Google Scholar 

  82. 82.

    He Z, Lindbråthen A, Kim T-J, Hägg M-B. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas. Int J Greenh Gas Control. 2017;64:323–32.

    CAS  Google Scholar 

  83. 83.

    He X. A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energ Sustain Soc. 2018;8:34.

    Google Scholar 

  84. 84.

    Scholes CA. Pilot plants of membrane technology in industry: challenges and key learnings. Front Chem Sci Eng. 2020;14:305–16.

    Google Scholar 

  85. 85.

    Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci. 1991;62:165–85.

    CAS  Google Scholar 

  86. 86.

    Robeson LM. The upper bound revisited. J Membr Sci. 2008;320:390–400.

    CAS  Google Scholar 

  87. 87.

    Freeman BD. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules. 1999;32:375–80.

    CAS  Google Scholar 

  88. 88.

    Yamaguchi T, Boetje LM, Koval CA, Noble RD, Bowman CN. Transport properties of carbon dioxide through amine functionalized carrier membranes. Ind Eng Chem Res. 1995;34:4071–7.

    CAS  Google Scholar 

  89. 89.

    Rafiq S, Deng L, Hägg M-B. Role of facilitated transport membranes and composite membranes for efficient CO2 capture – a review. ChemBioEng Rev. 2016;3:68–85.

    Google Scholar 

  90. 90.

    Kim T-J, Li B, Hägg M-B. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci B Polym Phys. 2004;42:4326–36.

    CAS  Google Scholar 

  91. 91.

    Sandru M, Kim T-J, Hägg M-B. High molecular fixed-site-carrier PVAm membrane for CO2 capture. Desalination. 2009;240:298–300.

    CAS  Google Scholar 

  92. 92.

    Deng L, Kim T-J, Hägg M-B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J Membr Sci. 2009;340:154–63.

    CAS  Google Scholar 

  93. 93.

    Kim T-J, Vrålstad H, Sandru M, Hägg M-B. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Membr Sci. 2013;428:218–24.

    CAS  Google Scholar 

  94. 94.

    Nieto DR, Lindbråthen A, Hägg M-B. Effect of water interactions on polyvinylamine at different pHs for Membrane gas separation. ACS Omega. 2017;2:8388–400.

    Google Scholar 

  95. 95.

    Francisco GJ, Chakma A, Feng X. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. J Membr Sci. 2007;303:54–63.

    CAS  Google Scholar 

  96. 96.

    Francisco GJ, Chakma A, Feng X. Separation of carbon dioxide from nitrogen using diethanolamineimpregnated poly(vinyl alcohol) membranes. Sep Purif Technol. 2010;71:205–13.

    CAS  Google Scholar 

  97. 97.

    Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Sci Technol Adv Mater. 2017;18:950–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Yuan S, Wang Z, Qiao Z, Wang M, Wang J, Wang S. Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine. J Membr Sci. 2011;378:425–37.

    CAS  Google Scholar 

  99. 99.

    Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J, et al. PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE J. 2013;59:215–28.

    CAS  Google Scholar 

  100. 100.

    Khalili F, Henni A. East ALL. pKa values of some piperazines at (298, 303, 313, and 323) K. J. Chem Eng Data. 2009;54:2914–7.

    CAS  Google Scholar 

  101. 101.

    Bishnoi S, Rochelle GT. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci. 2000;55:5531–43.

    CAS  Google Scholar 

  102. 102.

    Hägg MB, Lindbråthen A, He X, Nodeland SG, Cantero T. Pilot demonstration-reporting on CO2 capture from a cement plant using hollow fiber process. Energy Procedia. 2017;114:6150–65.

    Google Scholar 

  103. 103.

    Salim W, Vakharia V, Chen Y, Wu D, Han Y, Ho WSW. Fabrication and field testing of spiral-wound membrane modules for CO2capture from flue gas. J Membr Sci. 2018;556:126–37.

    CAS  Google Scholar 

  104. 104.

    Reynolds AJ, Verheyen TV, Adeloju SV, Meuleman E, Feron P. Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol. 2012;46:3643–54.

    CAS  PubMed  Google Scholar 

  105. 105.

    Rosa L, Reimer JA, Went MS, D’Odorico P. Hydrological limits to carbon capture and storage. Nat Sustain. 2020;3:658–66.

    Google Scholar 

  106. 106.

    von der Assen N, Jung J, Bardow A. Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci. 2013;6:2721–34.

    Google Scholar 

Download references


This study was supported by the Japan Society for the Promotion of Science (JSPS) for KAKENHI (Grant Numbers 17K06910, 17K00634, 18H02072, and 20K05595). The author is very thankful for Dr. Toru Yamaguchi for his support and valuable comments.

Author information



Corresponding author

Correspondence to Hidetaka Yamada.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamada, H. Amine-based capture of CO2 for utilization and storage. Polym J 53, 93–102 (2021).

Download citation

Further reading


Quick links